

Autostrada Brescia Verona Vicenza Padova SpA

via Flavio Gioia, 71 37135 Verona tel. +39 0458272222 Fax +39 0458200051

www.autobspd.it autobspd@autobspd.it direzione@pec.autobspd.it FUNZIONE COSTRUZIONI AUTOSTRADALI

Nuovo collegamento stradale tra la tangenziale sud di Vicenza e la viabilità ordinaria dei comuni di Arcugnano e Altavilla in provincia di Vicenza

PROGETTO DEFINITIVO

 DATA
 Febbraio 2022

 CUP
 G91B07000410005

 WBS
 B26.ARCUGN

Responsabile Unico del Procedimento

Arch. Roberto Beaco

AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.p.A Funzione Costruzioni Autostradali Direttore di Esecuzione del Contratto

Arch. Mirco Panarotto

R.T.I.

PROGETTISTA E RESPONSABILE INTEGRAZIONE TRA LE PRESTAZIONI SPECIALISTICHE: Ing. Francesco Nicchiarelli CAPO PROGETTO: Ing. Umberto Lugli

ELABORATO CANTIERIZZAZIONE

Relazione bilancio materie

SCALA -

NOME FILE ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0003

Project

Originator

Volume

Location

Type

Role

Number

Suitability

Rev

Revision

Rev.	Data	Descrizione	Redazione	Controllo	Approvazione
P01	17-02-2022	Emissione	L.MARCANIO	U. LUGLI	F.NICCHIARELLI

IL PRESENTE DOCUMENTO NON POTRA' ESSERE COPIATO, RIPRODOTTO O ALTRIMENTI PUBBLICATO, IN TUTTO O IN PARTE, SENZA IL CONSENSO SCRITTO DELLA AUTOSTRADA BS-VR-VI-PD S.P.A., OGNI UTILIZZO NON AUTORIZZATO SARA' PERSEGUITO A NORMA DI LEGGE
THIS DOCUMENT MAY NOT BE COPIED, REPRODUCED OR PUBLISHED, EITHER IN PART OR IN ITS ENTIRETY, WITHOUT THE WRITTEN PERMISSION OF AUTOSTRADA BRESCIA-VERONA-VICENZA-PADOVA S.P.A., UNAUTHORIZED USE WILL BE PROSECUTE BY LAW.

NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA Livello progettazione

PROGETTO DEFINITIVO

Elaborato

ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

INDICE

3	BILANCIO MATERIE	16
	2.1 Conclusioni per le trincee esplorative – verifica potenziale contaminazione	12
2	ESITI DEL PIANO DELLE INDAGINI AMBIENTALI	3
1	PREMESSA	2

NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE
SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI
ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA

Livello progettazione
PROGETTO DEFINITIVO

Elaborato

ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

1 PREMESSA

Nella presente Relazione si dettaglia il Bilancio Materie dell'intervento "Nuovo collegamento stradale tra la tangenziale sud di Vicenza e la viabilità ordinaria dei comuni di Arcugnano e Altavilla in provincia di Vicenza.

Nel corso del Progetto di Fattibilità Tecnico ed Economica, l'ARPAV ha segnalato la presenza di un possibile sito contaminato nei pressi di Via della Pilla, dove da progetto è prevista la realizzazione di una rotatoria (ROT04).

I progettisti hanno preso visione dell'Analisi di rischio effettuata dalle società "Ecochem srl" e "Sinergeo srl" redatta su incarico del Comune di Arcugnano, che prevedeva nell'area la realizzazione di una rotatoria per la sistemazione della viabilità locale. La AdR si era resa necessaria in seguito al rinvenimento di materiali di depositi antropici in matrice terrosa, che, in via preliminare, avevano evidenziato il superamento delle CSC per terreni ad uso commerciale-industriale relativamente ad alcuni metalli, idrocarburi pesanti (C > 12) e IPA. Le conclusioni dell'analisi di Rischio effettuata indicavano il sito come idoneo per la realizzazione di una opera stradale, non contaminato e non pericoloso per i lavoratori incaricati della manutenzione del manto stradale. Il documento ha ricevuto anche parere favorevole in una Conferenza dei Servizi del giorno 11/02 del 2016 (prot. N. 1760).

Nel corso del progetto definitivo, in base al piano di indagini dell'RTI di progettazione, l'impresa Geolavori S.r.l. ha eseguito una campagna geognostica – ambientale, con la finalità di valutare le proprietà meccaniche e ambientali per una corretta caratterizzazione delle terre da scavo, i cui esiti dal punto di vista ambientale si riportano a continuazione.

PROGETTO DEFINITIVO

Elaborato

ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA

2 **ESITI DEL PIANO DELLE INDAGINI AMBIENTALI**

Il piano di indagine ambientale ha previsto il campionamento delle matrici suoli e acque in corrispondenza dei sondaggi geognostici e di pozzetti esplorativi (PZ01÷PZ08) distribuiti lungo la viabilità in progetto.

A seguire vengono riportati gli esiti delle indagini di caratterizzazione ambientale condotte presso il sito di indagine.

I campioni di terreno e di acqua sono stati prelevati secondo i criteri previsti per la classificazione dei rifiuti, la gestione delle terre e rocce da scavo (DPR 120/17) e la verifica della potenziale contaminazione con riferimento ai valori di soglia (CSC) indicate nelle tabelle 1 e 2, allegato 5 alla parte IV del D.Lgs. 152/2006 per i terreni e le acque di falda.

I campioni di terreno e acqua di falda sono stati prelevati secondo i criteri:

- nº 8 campioni superficiali nell'intervallo compreso tra 0.0 m e 1.0 m dal p.c. e nº 8 campioni profondi nell'intervallo compreso tra 1.0 m e - 2.0 m dal p.c. in corrispondenza di:
 - 3 trincee esplorative (PZ1, PZ2 e PZ3) ubicate in corrispondenza del tracciato di collegamento tra casello VI Ovest - Z.I. Sant'Agostino
 - 5 trincee esplorative (PZ4, PZ5, PZ6, PZ7 e PZ8) ubicate del tratto successivo da viale S. Agostino a via Galilei-Meucci in zona industriale Nogarazza;
- nº 9 campioni prelevati in corrispondenza dei livelli 0.00 1.00; 2.00 3.00; 4.00 5.00 nei 3 sondaggi a carotaggio (S01 PZ, S03 PZ e S04 PZ) ubicati rispettivamente delle due rampe del viadotto di scavalco del fiume Retrone e in corrispondenza del ponte in via della Pilla;
- nº 3 campioni di acqua di falda prelevati nei 3 piezometri installati nei sondaggi S1, S3 e S4, collocati in posizione monte-valle rispetto alla zona industriale di Nogarazza.

Nella scheda seguente si riporta il riepilogo delle analisi ambientali eseguite nei singoli punti di indagine.

PROGETTO DEFINITIVO

Elaborato
ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE
SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI
ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA

			SCHE	DA SII	NTETICA PR	ROPOSTA INDAGIN	II AMBIENTALI ARCU	JGN +B2:C	14			
							terre				,	Acque
Sigla	Riferimento di progetto	Profondità (m)	Tipologia	punto di prelievo	i Prel. Campioni ambientali	Prof. di campionamento (m da p.c.)	Analisi caratterizza zione rifiuti solidi (tal quale)*	Test di cessione*	Analisi da ricercare secondo la Tab. 4.1 Allegato 4 del DPR 120/17, compresi Btex e IPA	Analisi da ricercare secondo la Tabella 1, Allegato 5 alla Parte IV del D.Lgs. 152/2006	N° Campioni acque	Analisi da ricercare secondo la Tabella 2, Allegato 5 alla Parte IV del D.Lgs. 152/2006
Pz01	Rotatoria 1	2	pozzetto	1	2	0,00 - 1,00 1,00 - 2,00	1	1	2			
S01_PZ	Viadotto_Pila 3	40	sondaggio	1	3	CA1: 0.00 - 1.00; CA2: 2.00 - 3.00; CA3: 4.00 - 5.00;	1	1	3		1	1
SO3_PZ	Viadotto_Spalla B	40	sondaggio	1	3	CA1: 0.00 - 1.00; CA2: 2.00 - 3.00; CA3: 4.00 - 5.00;	1	1	3		1	1
Pz02	Viadotto_Pila 4	2	sondaggio	1	2	0,00 - 1,00 1,00 - 2,00	1	1	2			
PZ03	Rotatoria 2 Viale S.Agostino	2	pozzetto	1	2	0,00 - 1,00 1,00 - 2,00	1	1	2			
Pz04	Viabilità zona agricola	2	pozzetto	1	2	0,00 - 1,00 1,00 - 2,00				2		
Pz05	Viabilità zona industriale	2	pozzetto	1	2	0,00 - 1,00 1,00 - 2,00				2		
Pz06	Viabilità zona industriale	2	pozzetto	1	2	0,00 - 1,00 1,00 - 2,00				2		
Pz07	Viabilità zona industriale	2	pozzetto	1	2	0,00 - 1,00 1,00 - 2,00				2		
Pz08	Viabilità zona industriale	2	pozzetto	1	2	0,00 - 1,00 1,00 - 2,00				2		
SO4_PZ	Ponte su SP della Pilla	30	sondaggio	1	3	CA1: 0.00 - 1.00; CA2: 2.00 - 3.00;	1			3	1	1

Le profondità dei campioni prelevati nei pozzetti ricadono in 2 intervalli (0.00-1.00 e 1.00-2.00 m dal p.c.), come nei sondaggi eseguiti in corrispondenza delle tratte a raso o in rilevato. Le profodità di prelievo dei campioni nei sondaggi sono funzione della tipologia e profondità delle fondazioni previste. Si prevedono n. 3 campionamenti di cui 1 superficiale (0.00-1.00 m dal p.c.), 1 intermedio ed 1 profondo, in funzione della quota del piano di posa della fondazione (quota prossima al fondo scavo). Qualora si riscontrasse uno spessore non trascurabile di riporto, è necessario prelevare un campione aggiuntivo nella "matrice riporto", ricercare gli analiti di tab. 4 del 120/2017 ed effettuare il test di cessione. I risultati del test di cessione dovranno essere confrontati con tab. 2 - Allegato alla parte V - D. Lgs 152/2006.

Nello schema successivo si riporta l'elenco dei campioni analizzati come terre e rocce da scavo e ai fini della verifica della potenziale contaminazione ai sensi della parte IV, Titolo V del D.Lgs. 152/2006 delle matrici terreno e acque sotterranee.

Si precisa che per le analisi chimiche sui suoli, considerata la destinazione urbanistica del sito di indagine che insiste all'interno della zona industriale, si sono presi come riferimento i valori di soglia (CSC) indicati in Colonna B, Tabella 1, allegato 5 alla parte IV, Titolo V del D.Lgs. 152/2006.

Da Tabella 1 a Tabella 3 si riportano gli esiti delle analisi chimiche condotte sui campioni prelevati nei suoli e nelle acque di falda.

Intervento: NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE	Livello progettazione PROGETTO DEFINITIVO	Elaborato ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.
SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI		
ARCHONANO E ALTAVILLA IN PROVINCIA DI VICENZA		

I risultati ottenuti dalle analisi dei campioni di terreno sono stati confrontati con i limiti tabellari di Col. B, Tab. 1, All. 5 alla Parte IV Titolo V del D.Lgs. 152/06.

Tutti i campioni di <u>suolo</u> hanno evidenziato concentrazioni inferiori alle Concentrazioni Soglia di Contaminazione (CSC) imposte dalla normativa per i parametri indagati con riferimento alla Col. B (siti ad uso commerciale e industriale) ad esclusione del campione **PZ05-CA2(1.0-2.0)** per il parametro **arsenico** (64.9 mg/kg > 50 mg/kg)

I risultati ottenuti dalle analisi dei campioni di <u>acqua di falda</u> sono stati confrontati con i limiti tabellari di Tab. 2, All. 5 alla Parte IV Titolo V del D.Lgs. 152/06.

Sono emersi superamenti alle CSC per il solo parametro manganese per tutti i campioni:

- S01-PZ Manganese 95.3 μ g/l > 50 μ g/l;
- S03-PZ Manganese 113.1 μ g/l > 50 μ g/l;
- S04-PZ Manganese 115.6 μ g/l > 50 μ g/l.

Con riferimento ai test di cessione non vi sono superamenti alle CSC di Tab.5 D.Lgs 121/20. I rifiuti caratterizzati sono **NON pericolosi**.

Livello progettazione
PROGETTO DEFINITIVO

Elaborato

ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA

				Analisi caratterizza zione rifiuti solidi (tal quale) SENZA POP'S	Test di cessione Digs. 121/2020 di modifica del Digs 36/2003 (ex D.M. 27/09/2010)	Analisi da ricercare secondo laTab. 4.1 Allegato 4 del DPR 120/17, compresi Btex e IPA ** e amianto	Analisi da ricercare secondo la Tabella 1, Allegato 5 alla Parte IV del D.L.gs. 152/2006. (METALLI, ORGANOSTANNICI, CIANURI LIBERI, FLUORURI, RESIDIO SECCO 105°, BTEX, IPA, ALIFATICI CLORURATI CANCEROGENI E NON CANCEROGENI, ALIFATICI ALOGENATI CANCEROGENI, MITROBENZENI, CLOROBENZENI, FENOLI CLORURATI E NON CLORURATI, PEB, IDROCARBURI C>12, IDROCARBURI C<12, AMIANTO)	Analisi da ricercare secondo la Tabella 2, Allegato 5 alla Parte IV del D.Lga. 152/2006 (METALLI, INQUINANTI INORGANICI, BTEX, IPA, ALIFATICI CLORURATI CANCEROGENI, ALIFATICI ALOGENATI CANCEROGENI, ALIFATICI ALOGENATI CANCEROGENI, ALIFATICI ALOGENATI CANCEROGENI, DENOCARBURI COMENI, CLOROFENOLI, PENOLI E CLOROFENOLI, PCB, IDROCARBURI COME NESANO, AMIANTO)
ID Punto di		Profon	dità (m)			<u> </u>		
Orelievo	ID Campione	Da	Α	1		Terre		Acque
PZ01	CA1	0.0	0.8			×		
PZ01	TQ	0.0	2.0	х	х			
PZ02	CA1	0.0	1.0		,,	х		
PZ02	CA2	1.0	2.0			x		
PZ02	TQ	0.0	1.0	х	х			
PZ03	CA1	0.0	1.0			х		
PZ03	CA2	1.0	2.0			х		
PZ03	TQ	0.0	2.0	х	х			
PZ04	CA1	0.0	1.0				Х	
PZ04	CA2	1.0	2.0				Х	
PZ05	CA1	0.0	1.0				Х	
PZ05	CA2	1.0	2.0				Х	
PZ06	CA1	0.0	1.0				Х	
PZ06	CA2	1.0	2.0				Х	
PZ07	CA1	0.0	1.0				Х	
PZ07	CA2	1.0	2.0				Х	
PZ08	CA1	0.0	1.0				Х	
PZ08	CA2	1.0	2.0				Х	
SO1_PZ	CA1	0.0	1.0					
SO1_PZ	CA2	2.0	3.0					
SO1_PZ	CA3	4.0	5.0					
S01_PZ	TQ	0.0	2.0					
S01_PZ	H2O							Х
S02_DH	CA1	0.0	1.0			х		
S02_DH	CA2	2.0	3.0			х		
S02_DH	CA3	4.0	5.0			Х		
S02_DH	TQ	0.0	4.4	х	Х			
SO3_PZ	CA1	0.0	1.0			х		
SO3_PZ	CA2	2.0	3.0			х		
SO3_PZ	CA3	4.0	5.0			х		
SO3_PZ	TQ	0.0	1.0	х	х			
SO3_PZ	H2O							Х
SO4_PZ	CA1	0.0	1.0				X	
SO4_PZ	CA2	2.0	3.0				Х	
S04_PZ	CA3	4.0	5.0				Х	
SO4_PZ	TQ	0.0	1.0	х	х			
S04_PZ	H2O							X

Livello progettazione	Elaborato
PROGETTO DEFINITIVO	ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

Tabella 1 Riepilogo analisi chimiche sui suoli ex tabella 1, Allegato 5 alla Parte IV del D.Lgs. 152/2006

COMMITTENTE:	AUTOSTRA															
PROGETTO:	Nuovo coll	legamento	stradale tra	ı la tangenzial	e sud di Vicen	za e la viabili	tà ordinaria d	ei comuni di A	Arcugnano e A	Itavilla in pro	vincia di Vicer	nza				
PARAMETRO	U.M.		o.1 DLgs	PZ04-CA1	PZ04-CA2	PZ05-CA1	PZ05-CA2	PZ06-CA1	PZ06-CA2	PZ07-CA1	PZ07-CA2	PZ08-CA1	PZ08-CA2	S04-CA1	S04-CA2	S04-CA
		Col. A	Col. B	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	0.0-1.0	2.0-3.0	4.0-5.0
Scheletro	%	-	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>1,0</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>18,3</td><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>1,0</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>18,3</td><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>1,0</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>18,3</td><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>1,0</td><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>18,3</td><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	1,0	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>18,3</td><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>18,3</td><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>18,3</td><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>18,3</td><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></loq<>	18,3	<loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
Residuo secco a 105°C	g/100g	-	-	95,8	96,2	97,9	88,5	98,2	98,7	97,8	97,8	98,6	98,5	97,8	99,9	99,3
Metalli																
Antimonio - Stibium	mg/kg s.s.	10	30	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
Arsenico - Arsenic	mg/kg s.s.	20	50	25,6	20,8	44,2	64,9	40,3	35,9	28,8	49,7	21,5	11,4	12,0	10,7	12,4
Berillio - Beryllium	mg/kg s.s.	2	10	1,7	1,2	1,3	1,4	1,2	0,9	1,1	1,3	0,8	<loq< td=""><td>1,0</td><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	1,0	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
Cadmio -Cadmium	mg/kg s.s.	2	15	2,8	2,2	2,2	2,2	1,9	1,6	5,8	2,1	2,8	3,4	0,8	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
Cobalto - Cobalt	mg/kg s.s.	20	250	19,0	15,4	15,9	14,1	11,5	7,3	16,0	13,0	10,3	6,8	11,3	7,1	8,2
Cromo totale	mg/kg s.s.	150	800	64,5	41,9	29,3	25,0	23,8	13,7	40,1	25,9	33,4	72,8	33,9	15,6	15,3
Cromo VI - Chrome VI	mg/kg s.s.	2	15	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
Mercurio - Mercury	mg/kg s.s.	1	5	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
Nichel - Nickel	mg/kg s.s.	120	500	57,9	43,5	27,0	26,9	24,5	13,8	32,4	27,3	27,1	42,5	26,2	13,4	13,8
Piombo - Lead	mg/kg s.s.	100	1000	35,2	14,6	47,5	42,4	29,6	25,5	263,5	34,9	94,0	190,3	14,4	9,3	11,4
Rame - Copper	mg/kg s.s.	120	600	46,3	35,2	39,9	46,1	40,0	30,1	57,4	40,7	54,4	111,6	38,2	21,2	22,1
Selenio - Selenium	mg/kg s.s.	3	15	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
Tallio - Thallium	mg/kg s.s.	1	10	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
Vanadio - Vanadium	mg/kg s.s.	90	250	79,4	68,8	44,1	38,9	37,0	20,9	49,8	38,5	32,9	20,0	50,5	26,3	25,2
Zinco - Zinc	mg/kg s.s.	150	1500	133,1	88,1	118,1	144,6	129,4	88,6	1170	146,5	438,1	819	61,9	46,2	55,6
Cianuri liberi	mg/kg s.s.	1	100	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<>	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>
Fluoruri	mg/kg s.s.	100	2000	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>14</td><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>14</td><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>14</td><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>14</td><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>14</td><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>14</td><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>14</td><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td>14</td><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></l0q<></td></loq<>	14	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
Solventi organici aromatici	- "															
Benzene CAS 71-43-2	mg/kg s.s.	0,1	2	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Toluene CAS 108-88-3	mg/kg s.s.	0,5	50	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
Etilbenzene CAS 100-41-4	mg/kg s.s.	0,5	50	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
Stirene CAS 100-42-5	mg/kg s.s.	0,5	50	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
o-xilene CAS 95-47-6	mg/kg s.s.	-	-	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
m/p-xilene CAS 106-42-3	mg/kg s.s.	-		<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
Sommatoria solventi organici aromatici	mg/kg s.s.	1	100	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Solventi alifatici clorurati non cancerogeni																
1,1,1-tricloroetano CAS 71-55-6	mg/kg s.s.	0,5	50	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
1,1,2,2-tetracloroetano CAS 79-34-5	mg/kg s.s.	0,5	10	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
1,1,2-tricloroetano CAS 79-00-5	mg/kg s.s.	0,5	15	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
1,1-dicloroetano CAS 75-34-3	mg/kg s.s.	0,5	30	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
1,2,3-tricloropropano CAS 96-18-4	mg/kg s.s.	1	10	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
1,2-dicloroetilene	mg/kg s.s.	0,3	15	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
1,2-dicloropropano CAS 78-87-5	mg/kg s.s.	0,3	5	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Solventi alifatici clorurati cancerogeni		0.1		100	100	100	100	100	100	100			100	100	100	
Clorometano CAS 74-87-3	mg/kg s.s.	0,1	5	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>
Diclorometano CAS 75-09-2	mg/kg s.s.	0,1	5	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>
Triclorometano CAS 67-66-3	mg/kg s.s.	0,1	5	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
Cloruro di vinile CAS 75-01-4	mg/kg s.s.	0,01	0,1	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
1,2-dicloroetano CAS 107-06-2	mg/kg s.s.	0,2	5	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
1,1-dicloroetene CAS 75-35-4	mg/kg s.s.	0,1	1	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
Tricloroetilene CAS 79-01-6	mg/kg s.s.	1	10	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
Tetracloroetilene CAS 127-18-4	mg/kg s.s.	0,5	20	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
Solventi alifatici alogenati cancerogeni	1 ,,															
1,2-dibromoetano CAS 106-93-4	mg/kg s.s.	0,01	0,1	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
Bromodiclorometano CAS 75-27-4	mg/kg s.s.	0,5	10	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
Dibromoclorometano CAS 594-18-3	mg/kg s.s.	0,5	10	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></l0q<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loc< td=""></loc<></td></loq<></td></loq<>	<loq< td=""><td><loc< td=""></loc<></td></loq<>	<loc< td=""></loc<>
Tribromometano CAS 75-25-2	mg/kg s.s.	0,5	10	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l00< td=""></l00<></td></loq<></td></loq<>	<loq< td=""><td><l00< td=""></l00<></td></loq<>	<l00< td=""></l00<>
IPA / PAH																
25-Benzo(a)antracene CAS 56-55-3	mg/kg s.s.	0,5	10	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,006</td><td><loq< td=""><td>0,016</td><td><loq< td=""><td>0,243</td><td>2,785</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0,006</td><td><loq< td=""><td>0,016</td><td><loq< td=""><td>0,243</td><td>2,785</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0,006</td><td><loq< td=""><td>0,016</td><td><loq< td=""><td>0,243</td><td>2,785</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0,006</td><td><loq< td=""><td>0,016</td><td><loq< td=""><td>0,243</td><td>2,785</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	0,006	<loq< td=""><td>0,016</td><td><loq< td=""><td>0,243</td><td>2,785</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	0,016	<loq< td=""><td>0,243</td><td>2,785</td><td><loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<></td></loq<>	0,243	2,785	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
26-Benzo(a)pirene CAS 50-32-8	mg/kg s.s.	0,1	10	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,010</td><td><loq< td=""><td>0,015</td><td><loq< td=""><td>0,200</td><td>1,489</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0,010</td><td><loq< td=""><td>0,015</td><td><loq< td=""><td>0,200</td><td>1,489</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0,010</td><td><loq< td=""><td>0,015</td><td><loq< td=""><td>0,200</td><td>1,489</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0,010</td><td><loq< td=""><td>0,015</td><td><loq< td=""><td>0,200</td><td>1,489</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	0,010	<loq< td=""><td>0,015</td><td><loq< td=""><td>0,200</td><td>1,489</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	0,015	<loq< td=""><td>0,200</td><td>1,489</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	0,200	1,489	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
27-Benzo(b)fluorantene CAS 205-99-2	mg/kg s.s.	0,5	10	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,010</td><td><loq< td=""><td>0,020</td><td><loq< td=""><td>0,222</td><td>1,575</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0,010</td><td><loq< td=""><td>0,020</td><td><loq< td=""><td>0,222</td><td>1,575</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0,010</td><td><loq< td=""><td>0,020</td><td><loq< td=""><td>0,222</td><td>1,575</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0,010</td><td><loq< td=""><td>0,020</td><td><loq< td=""><td>0,222</td><td>1,575</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	0,010	<loq< td=""><td>0,020</td><td><loq< td=""><td>0,222</td><td>1,575</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	0,020	<loq< td=""><td>0,222</td><td>1,575</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	0,222	1,575	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>

n	te	n	10	ni	ha	۰

NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE

SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA Livello progettazione
PROGETTO DEFINITIVO

Elaborato

ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

		CSC Tab	o.1 DLgs	PZ04-CA1	PZ04-CA2	PZ05-CA1	PZ05-CA2	PZ06-CA1	PZ06-CA2	PZ07-CA1	PZ07-CA2	PZ08-CA1	PZ08-CA2	S04-CA1	S04-CA2	S04-CA3
PARAMETRO	U.M.	Col. A	Col. B	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	0.0-1.0	2.0-3.0	4.0-5.0
28-Benzo(k)fluorantene CAS 207-08-9	mg/kg s.s.	0.5	10	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.008</th><th><loq< th=""><th>0.076</th><th>0.570</th><th><loq< th=""><th><loq< th=""><th><l00< th=""></l00<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.008</th><th><loq< th=""><th>0.076</th><th>0.570</th><th><loq< th=""><th><loq< th=""><th><l00< th=""></l00<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.008</th><th><loq< th=""><th>0.076</th><th>0.570</th><th><loq< th=""><th><loq< th=""><th><l00< th=""></l00<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.008</th><th><loq< th=""><th>0.076</th><th>0.570</th><th><loq< th=""><th><loq< th=""><th><l00< th=""></l00<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.008</th><th><loq< th=""><th>0.076</th><th>0.570</th><th><loq< th=""><th><loq< th=""><th><l00< th=""></l00<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.008</th><th><loq< th=""><th>0.076</th><th>0.570</th><th><loq< th=""><th><loq< th=""><th><l00< th=""></l00<></th></loq<></th></loq<></th></loq<></th></loq<>	0.008	<loq< th=""><th>0.076</th><th>0.570</th><th><loq< th=""><th><loq< th=""><th><l00< th=""></l00<></th></loq<></th></loq<></th></loq<>	0.076	0.570	<loq< th=""><th><loq< th=""><th><l00< th=""></l00<></th></loq<></th></loq<>	<loq< th=""><th><l00< th=""></l00<></th></loq<>	<l00< th=""></l00<>
29-Benzo(g,h,i)perilene CAS 191-24-2	mg/kg s.s.	0,1	10	<loq< th=""><th><loq.< th=""><th><loq< th=""><th><loq< th=""><th>0,012</th><th><loq< th=""><th>0,015</th><th><loq< th=""><th>0,161</th><th>1,155</th><th><loq< th=""><th><loq.< th=""><th><loq.< th=""></loq.<></th></loq.<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq.<></th></loq<>	<loq.< th=""><th><loq< th=""><th><loq< th=""><th>0,012</th><th><loq< th=""><th>0,015</th><th><loq< th=""><th>0,161</th><th>1,155</th><th><loq< th=""><th><loq.< th=""><th><loq.< th=""></loq.<></th></loq.<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq.<>	<loq< th=""><th><loq< th=""><th>0,012</th><th><loq< th=""><th>0,015</th><th><loq< th=""><th>0,161</th><th>1,155</th><th><loq< th=""><th><loq.< th=""><th><loq.< th=""></loq.<></th></loq.<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0,012</th><th><loq< th=""><th>0,015</th><th><loq< th=""><th>0,161</th><th>1,155</th><th><loq< th=""><th><loq.< th=""><th><loq.< th=""></loq.<></th></loq.<></th></loq<></th></loq<></th></loq<></th></loq<>	0,012	<loq< th=""><th>0,015</th><th><loq< th=""><th>0,161</th><th>1,155</th><th><loq< th=""><th><loq.< th=""><th><loq.< th=""></loq.<></th></loq.<></th></loq<></th></loq<></th></loq<>	0,015	<loq< th=""><th>0,161</th><th>1,155</th><th><loq< th=""><th><loq.< th=""><th><loq.< th=""></loq.<></th></loq.<></th></loq<></th></loq<>	0,161	1,155	<loq< th=""><th><loq.< th=""><th><loq.< th=""></loq.<></th></loq.<></th></loq<>	<loq.< th=""><th><loq.< th=""></loq.<></th></loq.<>	<loq.< th=""></loq.<>
30-Crisene CAS 218-01-9	mg/kg s.s.	5	50	<loq< th=""><th><loq.< th=""><th><loq.< th=""><th><loq.< th=""><th>0,006</th><th><loq.< th=""><th>0,017</th><th><loq< th=""><th>0,252</th><th>2,771</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq.<></th></loq.<></th></loq.<></th></loq.<></th></loq<>	<loq.< th=""><th><loq.< th=""><th><loq.< th=""><th>0,006</th><th><loq.< th=""><th>0,017</th><th><loq< th=""><th>0,252</th><th>2,771</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq.<></th></loq.<></th></loq.<></th></loq.<>	<loq.< th=""><th><loq.< th=""><th>0,006</th><th><loq.< th=""><th>0,017</th><th><loq< th=""><th>0,252</th><th>2,771</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq.<></th></loq.<></th></loq.<>	<loq.< th=""><th>0,006</th><th><loq.< th=""><th>0,017</th><th><loq< th=""><th>0,252</th><th>2,771</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq.<></th></loq.<>	0,006	<loq.< th=""><th>0,017</th><th><loq< th=""><th>0,252</th><th>2,771</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq.<>	0,017	<loq< th=""><th>0,252</th><th>2,771</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0,252	2,771	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
31-Dibenzo(a,e)pirene CAS 192-65-4	mg/kg s.s.	0,1	10	<loq< th=""><th><loq.< th=""><th><loq.< th=""><th><loq.< th=""><th><loq.< th=""><th><loq.< th=""><th>0,005</th><th><loq< th=""><th>0,043</th><th>0,401</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq.<></th></loq.<></th></loq.<></th></loq.<></th></loq.<></th></loq<>	<loq.< th=""><th><loq.< th=""><th><loq.< th=""><th><loq.< th=""><th><loq.< th=""><th>0,005</th><th><loq< th=""><th>0,043</th><th>0,401</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq.<></th></loq.<></th></loq.<></th></loq.<></th></loq.<>	<loq.< th=""><th><loq.< th=""><th><loq.< th=""><th><loq.< th=""><th>0,005</th><th><loq< th=""><th>0,043</th><th>0,401</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq.<></th></loq.<></th></loq.<></th></loq.<>	<loq.< th=""><th><loq.< th=""><th><loq.< th=""><th>0,005</th><th><loq< th=""><th>0,043</th><th>0,401</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq.<></th></loq.<></th></loq.<>	<loq.< th=""><th><loq.< th=""><th>0,005</th><th><loq< th=""><th>0,043</th><th>0,401</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq.<></th></loq.<>	<loq.< th=""><th>0,005</th><th><loq< th=""><th>0,043</th><th>0,401</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq.<>	0,005	<loq< th=""><th>0,043</th><th>0,401</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0,043	0,401	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
32-Dibenzo(a,l)pirene CAS 191-30-0	mg/kg s.s.	0,1	10	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0,038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0,038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0,038</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0,038	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
33-Dibenzo(a,i)pirene CAS 189-55-9	mg/kg s.s.	0,1	10	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,042</th><th>0,293</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,042</th><th>0,293</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,042</th><th>0,293</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,042</th><th>0,293</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,042</th><th>0,293</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0,042</th><th>0,293</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0,042</th><th>0,293</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0,042</th><th>0,293</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0,042	0,293	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
34-Dibenzo(a,h)pirene CAS 189-64-0	mg/kg s.s.	0,1	10	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,006</th><th>0,087</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,006</th><th>0,087</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,006</th><th>0,087</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,006</th><th>0,087</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,006</th><th>0,087</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0,006</th><th>0,087</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0,006</th><th>0,087</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0,006</th><th>0,087</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0,006	0,087	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
35-Dibenzo(a,h)antracene CAS 53-70-3	mg/kg s.s.	0,1	10	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,007</th><th><loq< th=""><th>0,075</th><th>0,606</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,007</th><th><loq< th=""><th>0,075</th><th>0,606</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,007</th><th><loq< th=""><th>0,075</th><th>0,606</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0,007</th><th><loq< th=""><th>0,075</th><th>0,606</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0,007</th><th><loq< th=""><th>0,075</th><th>0,606</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0,007</th><th><loq< th=""><th>0,075</th><th>0,606</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0,007	<loq< th=""><th>0,075</th><th>0,606</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0,075	0,606	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
36-Indeno (1,2,3 cd)pirene CAS 193-39-5	mg/kg s.s.	0,1	5	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,007</th><th><loq< th=""><th>0,012</th><th><loq< th=""><th>0,131</th><th>1,120</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0,007</th><th><loq< th=""><th>0,012</th><th><loq< th=""><th>0,131</th><th>1,120</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0,007</th><th><loq< th=""><th>0,012</th><th><loq< th=""><th>0,131</th><th>1,120</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0,007</th><th><loq< th=""><th>0,012</th><th><loq< th=""><th>0,131</th><th>1,120</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0,007	<loq< th=""><th>0,012</th><th><loq< th=""><th>0,131</th><th>1,120</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0,012	<loq< th=""><th>0,131</th><th>1,120</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0,131	1,120	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
37-Pirene CAS 129-00-0	mg/kg s.s.	5	50	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,008</th><th><loq< th=""><th>0,021</th><th><loq< th=""><th>0,371</th><th>3,821</th><th><loq< th=""><th><loq< th=""><th><loq.< th=""></loq.<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0,008</th><th><loq< th=""><th>0,021</th><th><loq< th=""><th>0,371</th><th>3,821</th><th><loq< th=""><th><loq< th=""><th><loq.< th=""></loq.<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0,008</th><th><loq< th=""><th>0,021</th><th><loq< th=""><th>0,371</th><th>3,821</th><th><loq< th=""><th><loq< th=""><th><loq.< th=""></loq.<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0,008</th><th><loq< th=""><th>0,021</th><th><loq< th=""><th>0,371</th><th>3,821</th><th><loq< th=""><th><loq< th=""><th><loq.< th=""></loq.<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0,008	<loq< th=""><th>0,021</th><th><loq< th=""><th>0,371</th><th>3,821</th><th><loq< th=""><th><loq< th=""><th><loq.< th=""></loq.<></th></loq<></th></loq<></th></loq<></th></loq<>	0,021	<loq< th=""><th>0,371</th><th>3,821</th><th><loq< th=""><th><loq< th=""><th><loq.< th=""></loq.<></th></loq<></th></loq<></th></loq<>	0,371	3,821	<loq< th=""><th><loq< th=""><th><loq.< th=""></loq.<></th></loq<></th></loq<>	<loq< th=""><th><loq.< th=""></loq.<></th></loq<>	<loq.< th=""></loq.<>
Sommatoria policiclici aromatici (da 25 a 34)	mg/kg s.s.	10	100	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0,044</th><th><loq< th=""><th>0,096</th><th><loq< th=""><th>1,245</th><th>11,164</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0,044</th><th><loq< th=""><th>0,096</th><th><loq< th=""><th>1,245</th><th>11,164</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0,044</th><th><loq< th=""><th>0,096</th><th><loq< th=""><th>1,245</th><th>11,164</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0,044</th><th><loq< th=""><th>0,096</th><th><loq< th=""><th>1,245</th><th>11,164</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0,044	<loq< th=""><th>0,096</th><th><loq< th=""><th>1,245</th><th>11,164</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	0,096	<loq< th=""><th>1,245</th><th>11,164</th><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	1,245	11,164	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Nitrobenzeni																
Nitrobenzene CAS 98-95-3	mg/kg s.s.	0,5	30	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
1,2-dinitrobenzene CAS 528-29-6	mg/kg s.s.	0,1	25	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
1,3-dinitrobenzene CAS 99-65-0	mg/kg s.s.	0,1	25	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
1-cloro-2-nitrobenzene CAS 88-73-3	mg/kg s.s.	-	-	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
1-cloro-3-nitrobenzene CAS 121-73-3	mg/kg s.s.	-	-	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
1-cloro-4-nitrobenzene CAS 100-00-5	mg/kg s.s.		-	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
2,5-dicloronitrobenzene CAS 89-61-2	mg/kg s.s.	-	-	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
3,4-dicloronitrobenzene CAS 99-54-7	mg/kg s.s.		-	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Cloronitrobenzeni come somma (da calcolo)	mg/kg s.s.	0,1	10	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Clorobenzeni																
Monoclorobenzene CAS 108-90-7	mg/kg s.s.	0,5	50	<loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
1,2-diclorobenzene CAS 95-50-1	mg/kg s.s.	1	50	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
1,4-diclorobenzene CAS 106-46-7	mg/kg s.s.	0,1	10	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
1,2,4-triclorobenzene CAS 120-82-1	mg/kg s.s.	1	50	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
1,2,4,5-tetraclorobenzene CAS 95-94-3	mg/kg s.s.	1	25	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Pentaclorobenzene CAS 608-93-5	mg/kg s.s.	0,1	50	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Esaclorobenzene CAS 118-74-1	mg/kg s.s.	0,05	5	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<>	<l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
PCB																
PCB #18 CAS 037680-65-2	mg/kg s.s.		-	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
PCB #28 CAS 007012-37-5	mg/kg s.s.	-	-	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
PCB #31 CAS 016606-02-3	mg/kg s.s.		-	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></l0q 	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<>	<l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<>	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""></l0q<></l0q
PCB #52 CAS 035693-99-3 PCB #44 CAS 041464-39-5	mg/kg s.s.		-	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th>0.007</th><th>0.005</th><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th>0.007</th><th>0.005</th><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th>0.007</th><th>0.005</th><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th>0.007</th><th>0.005</th><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th>0.007</th><th>0.005</th><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th>0.007</th><th>0.005</th><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th>0.007</th><th>0.005</th><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th>0.007</th><th>0.005</th><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	0.007	0.005	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""></l0q<></l0q
PCB #44 CAS 041464-59-5 PCB #126 CAS 057465-28-8	mg/kg s.s. mg/kg s.s.		-	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></loq<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></loq<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></loq<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></loq<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></loq<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></loq<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></loq<></th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></loq<></th></l0q<></l0q 	<loq< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></loq<>	<loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<>	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""></l0q<></l0q
PCB #126 CAS 057465-28-8 PCB #114 CAS 074472-37-0	mg/kg s.s. mg/kg s.s.		-	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></th></l0q<></l0q 	<l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<>	<l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""></l0q<></l0q
PCB #114 CAS 074472-37-0	mg/kg s.s.			<loq <loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq <loq< th=""><th><l0q< th=""><th><l0q< th=""><th>0.019</th><th>0.015</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></loq<></loq </th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></loq<></loq 	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq <loq< th=""><th><l0q< th=""><th><l0q< th=""><th>0.019</th><th>0.015</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></loq<></loq </th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq <loq< th=""><th><l0q< th=""><th><l0q< th=""><th>0.019</th><th>0.015</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></loq<></loq </th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><loq <loq< th=""><th><l0q< th=""><th><l0q< th=""><th>0.019</th><th>0.015</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></loq<></loq </th></l0q<></th></l0q<>	<l0q< th=""><th><loq <loq< th=""><th><l0q< th=""><th><l0q< th=""><th>0.019</th><th>0.015</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></loq<></loq </th></l0q<>	<loq <loq< th=""><th><l0q< th=""><th><l0q< th=""><th>0.019</th><th>0.015</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></loq<></loq 	<l0q< th=""><th><l0q< th=""><th>0.019</th><th>0.015</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th>0.019</th><th>0.015</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<>	0.019	0.015	<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
PCB #101 CAS 037680-73-2 PCB #110 CAS 038380-03-9	mg/kg s.s.			<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0,013</th><th>0.013</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0,013</th><th>0.013</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<></th></l0q<>	<l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0,013</th><th>0.013</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<>	<l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0,013</th><th>0.013</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0,013</th><th>0.013</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0,013</th><th>0.013</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th>0,013</th><th>0.013</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th>0,013</th><th>0.013</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<>	0,013	0.013	<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
PCB #77 CAS 032598-13-3	mg/kg s.s.			<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<></th></l0q<>	<l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<>	<l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
PCB #99 CAS 038380-01-7	mg/kg s.s.			<l0q< th=""><th><l0q <l0q< th=""><th><l0q <l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.006</th><th><1.00</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></l0q </th></l0q<></l0q </th></l0q<>	<l0q <l0q< th=""><th><l0q <l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.006</th><th><1.00</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></l0q </th></l0q<></l0q 	<l0q <l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.006</th><th><1.00</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></l0q 	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.006</th><th><1.00</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.006</th><th><1.00</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.006</th><th><1.00</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th>0.006</th><th><1.00</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th>0.006</th><th><1.00</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	0.006	<1.00	<l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<>	<1.00	<l0q< th=""></l0q<>
PCB #99 CAS 058580-01-7 PCB #81 CAS 070362-50-4	mg/kg s.s.			<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<></th></l0q<></l0q 	<loq< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></loq<>	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""></l0q<></l0q
PCB #81 CAS 070362-30-4 PCB #157 CAS 069782-90-7	mg/kg s.s.			<l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""><th><l0q <l0q< th=""></l0q<></l0q </th></l0q<></l0q 	<l0q <l0q< th=""></l0q<></l0q
PCB #123 CAS 065510-44-3	mg/kg s.s.			<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
PCB #118 CAS 03350-44-5	mg/kg s.s.			<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.014</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.014</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.014</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.014</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.014</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.014</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th>0.014</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th>0.014</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<>	0.014	0.010	<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
PCB #95 CAS 038379-99-6	mg/kg s.s.	-	-	<l0q< th=""><th><l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<></th></l0q<>	<l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<>	<l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th>0.012</th><th>0.010</th><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<>	0.012	0.010	<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
PCB #149 CAS 038380-04-0	mg/kg s.s.		-	<l0q< th=""><th><l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.009</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<></th></l0q<>	<l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.009</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<>	<l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.009</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.009</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.009</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.009</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th>0.012</th><th>0.009</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th>0.012</th><th>0.009</th><th><l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	0.012	0.009	<l0q< th=""><th><1.00</th><th><l0q< th=""></l0q<></th></l0q<>	<1.00	<l0q< th=""></l0q<>
PCB #169 CAS 032774-16-6	mg/kg s.s.	-	-	<l0q< th=""><th><l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<></th></l0q<>	<l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<>	<l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></loq<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
PCB #105 CAS 032598-14-4	mg/kg s.s.	-		<loq< th=""><th><loq< th=""><th><loq< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l00<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l00<></th></loq<></th></loq<>	<loq< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l00<></th></loq<>	<l00< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l00<>	<l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></loq<></th></l0q<></th></loq<>	<l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></loq<></th></l0q<>	<loq< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></loq<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
PCB #128 CAS 038380-07-3	mg/kg s.s.	-		<loq< th=""><th><loq< th=""><th><loq< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l00<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l00<></th></loq<></th></loq<>	<loq< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l00<></th></loq<>	<l00< th=""><th><l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<></th></l00<>	<l0q< th=""><th><l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></loq<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th><l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></loq<></th></l0q<></th></loq<>	<l0q< th=""><th><loq< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></loq<></th></l0q<>	<loq< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></loq<>	<l0q< th=""><th><l00< th=""></l00<></th></l0q<>	<l00< th=""></l00<>
PCB #189 CAS 039635-31-9	mg/kg s.s.	-		<l0q< th=""><th><l00< th=""><th><l00< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l00<></th></l0q<>	<l00< th=""><th><l00< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l00<>	<l00< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
PCB #170 CAS 035065-30-6	mg/kg s.s.	-	-	<l0q< th=""><th><l0q< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l00<></th></l00<></th></l0q<></th></l0q<>	<l0q< th=""><th><l00< th=""><th><l00< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l00<></th></l00<></th></l0q<>	<l00< th=""><th><l00< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l00<></th></l00<>	<l00< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l00<>	<l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<>	<l0q< th=""><th><l00< th=""></l00<></th></l0q<>	<l00< th=""></l00<>
PCB #156 CAS 038380-08-4	mg/kg s.s.	-	-	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""><th><l00< th=""><th><l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<></th></l00<></th></l00<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l00< th=""><th><l00< th=""><th><l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<></th></l00<></th></l00<></th></l0q<></th></l0q<>	<l0q< th=""><th><l00< th=""><th><l00< th=""><th><l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<></th></l00<></th></l00<></th></l0q<>	<l00< th=""><th><l00< th=""><th><l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<></th></l00<></th></l00<>	<l00< th=""><th><l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<></th></l00<>	<l0q< th=""><th><l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<>	<l00< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l00< th=""></l00<></th></l0q<></th></l0q<>	<l0q< th=""><th><l00< th=""></l00<></th></l0q<>	<l00< th=""></l00<>
PCB #167 CAS 052663-72-6	mg/kg s.s.		-	<l0q< th=""><th><l0q< th=""><th><l00< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<></th></l0q<>	<l0q< th=""><th><l00< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<></th></l0q<>	<l00< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l00<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
				200	-500	250		-504	-504		-500,		200			

Intervento:	Livello progettazione	Elaborato
NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE	PROGETTO DEFINITIVO	ARCUGN-VNHT-GEN-S0 ZZ-ZZ00

SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA

0	ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

PARAMETRO	U.M.	CSC Tal	o.1 DLgs	PZ04-CA1	PZ04-CA2	PZ05-CA1	PZ05-CA2	PZ06-CA1	PZ06-CA2	PZ07-CA1	PZ07-CA2	PZ08-CA1	PZ08-CA2	S04-CA1	S04-CA2	S04-CA3
PARAMETRO	U.W.	Col. A	Col. B	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	0.0-1.0	2.0-3.0	4.0-5.0
PCB #151 CAS 052663-63-5	mg/kg s.s.	-	-	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB #183 CAS 052663-69-1	mg/kg s.s.	-	-	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB #146 CAS 051908-16-8	mg/kg s.s.	-	-	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB #153 CAS 035065-27-1	mg/kg s.s.	-	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,005</td><td>0,005</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,005</td><td>0,005</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,005</td><td>0,005</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,005</td><td>0,005</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,005</td><td>0,005</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0,005</td><td>0,005</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0,005</td><td>0,005</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0,005</td><td>0,005</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	0,005	0,005	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB #180 CAS 035065-29-3	mg/kg s.s.	-	-	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB #177 CAS 052663-70-4	mg/kg s.s.	-	-	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB #138 CAS 035065-28-2	mg/kg s.s.	-	-	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,010</td><td>0,009</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,010</td><td>0,009</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,010</td><td>0,009</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,010</td><td>0,009</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,010</td><td>0,009</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0,010</td><td>0,009</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0,010</td><td>0,009</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0,010</td><td>0,009</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	0,010	0,009	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB #187 CAS 052663-68-0	mg/kg s.s.	-	-	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB totali	mg/kg s.s.	0,06	5	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,100</td><td>0,076</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,100</td><td>0,076</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,100</td><td>0,076</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,100</td><td>0,076</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,100</td><td>0,076</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0,100</td><td>0,076</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0,100</td><td>0,076</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0,100</td><td>0,076</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	0,100	0,076	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Fenoli clorurati																
2,4,6-triclorofenolo CAS 88-06-2	mg/kg s.s.	0,01	5	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
2,4-diclorofenolo CAS 120-83-2	mg/kg s.s.	0,5	50	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
2-clorofenolo CAS 95-57-8	mg/kg s.s.	0,5	25	6,182	0,066	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,076</td><td>0,029</td><td><loq< td=""><td>3,286</td><td>0,0050</td><td>0,0050</td><td>0,0050</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0,076</td><td>0,029</td><td><loq< td=""><td>3,286</td><td>0,0050</td><td>0,0050</td><td>0,0050</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0,076</td><td>0,029</td><td><loq< td=""><td>3,286</td><td>0,0050</td><td>0,0050</td><td>0,0050</td></loq<></td></loq<></td></loq<>	<loq< td=""><td>0,076</td><td>0,029</td><td><loq< td=""><td>3,286</td><td>0,0050</td><td>0,0050</td><td>0,0050</td></loq<></td></loq<>	0,076	0,029	<loq< td=""><td>3,286</td><td>0,0050</td><td>0,0050</td><td>0,0050</td></loq<>	3,286	0,0050	0,0050	0,0050
Pentaclorofenolo CAS 87-86-5	mg/kg s.s.	0,01	5	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Fenoli non clorurati																
Fenolo CAS 108-95-2	mg/kg s.s.	1	60	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,0130</td><td>0,0110</td><td>0,0130</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,0130</td><td>0,0110</td><td>0,0130</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,0130</td><td>0,0110</td><td>0,0130</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,0130</td><td>0,0110</td><td>0,0130</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,0130</td><td>0,0110</td><td>0,0130</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,0130</td><td>0,0110</td><td>0,0130</td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>0,0130</td><td>0,0110</td><td>0,0130</td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>0,0130</td><td>0,0110</td><td>0,0130</td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>0,0130</td><td>0,0110</td><td>0,0130</td></loq<></td></loq<>	<loq< td=""><td>0,0130</td><td>0,0110</td><td>0,0130</td></loq<>	0,0130	0,0110	0,0130
Metilfenolo (o-, m-, p-)	mg/kg s.s.	0,1	25	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Idrocarburi leggeri C<12	mg/kg s.s.	10	250	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Idrocarburi pesanti C>12	mg/kg s.s.	50	750	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>78</td><td>302</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>78</td><td>302</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>78</td><td>302</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>78</td><td>302</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td>78</td><td>302</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td>78</td><td>302</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td>78</td><td>302</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td>78</td><td>302</td><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	78	302	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Composti organo stannici																
Di-n-butyltin (DBT)	mg/kg s.s.	-	-	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Mono-n-butyltin (MBT)	mg/kg s.s.	-	-	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Tri-n-butyltin (TBT)	mg/kg s.s.	-	-	<loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Triphenyltin (TPhT)	mg/kg s.s.	-	-	<loq< td=""><td><loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Tricyclohexyltin (TcyT)	mg/kg s.s.	-	-	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Somma Composti organostannici	mg/kg s.s.	1	350	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Amianto	mg/kg s.s.	1000	1000	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>

Intervento:	Livello progettazione	Elaborato
NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE	PROGETTO DEFINITIVO	ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.
SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI		
ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA		

Tabella 2 Riepilogo analisi chimiche sui suoli ex Tab. 4.1 Allegato 4 del DPR 120/17 (compresi BTEX e IPA)

DADAMETRO	U.M.	CSC Tab	.1 DLgs	PZ01-CA1	PZ02-CA1	PZ02-CA2	PZ03-CA1	PZ03-CA2	S02-CA1	S02-CA2	S02-CA3	S03-CA1	S03-CA2	S03-CA3
PARAMETRO	U.IVI.	Col. A	Col. B	0.0-0.8	0.0-1.0	1.0-2.0	0.0-1.0	1.0-2.0	0.0-1.0	2.0-3.0	4.0-5.0	0.0-1.0	2.0-3.0	4.0-5.0
Scheletro	%	-	-	47,2	< 1	< 1	1,2	< 1	9,0	16,4	33,7	<loq< th=""><th><loq< th=""><th>< 1</th></loq<></th></loq<>	<loq< th=""><th>< 1</th></loq<>	< 1
Residuo secco a 105°C	g/100g	-	-	98,1	95,9	96,3	97,4	97,8	93,2	96,3	95,9	95,7	97,9	98,7
Metalli														
Arsenico - Arsenic	mg/kg s.s.	20	50	6,4	18,3	18,6	28,8	25,6	10,0	6,9	6,3	22,1	13,3	9,3
Cadmio -Cadmium	mg/kg s.s.	2	15	1,0	2,2	1,7	2,2	1,9	3,3	1,6	1,7	3,1	1,4	1,1
Cobalto - Cobalt	mg/kg s.s.	20	250	4,9	14,5	10,3	15,2	12,6	37,2	17,4	15,5	24,0	10,1	8,4
Cromo totale	mg/kg s.s.	150	800	33,3	55,2	37,5	36,6	31,7	112,2	59,2	53,3	68,3	26,3	20,9
Cromo VI - Chrome VI	mg/kg s.s.	2	15	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Mercurio - Mercury	mg/kg s.s.	1	5	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Nichel - Nickel	mg/kg s.s.	120	500	17,7	48,1	31,6	36,2	31,9	165,3	78,1	64,3	65,7	27,9	22,6
Piombo - Lead	mg/kg s.s.	100	1000	30,6	22,0	30,2	39,7	19,8	<loq< th=""><th><loq< th=""><th><loq< th=""><th>24,6</th><th>6,9</th><th>3,5</th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>24,6</th><th>6,9</th><th>3,5</th></loq<></th></loq<>	<loq< th=""><th>24,6</th><th>6,9</th><th>3,5</th></loq<>	24,6	6,9	3,5
Rame - Copper	mg/kg s.s.	120	600	29,2	36,0	31,9	52,2	42,2	57,9	49,8	29,0	50,9	22,4	24,7
Zinco - Zinc	mg/kg s.s.	150	1500	96,4	90,3	77,8	126,2	96,4	77,5	57,3	47,1	128,6	58,7	46,9
Idrocarburi pesanti C>12	mg/kg s.s.	50	750	121	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>81</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>81</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>81</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>81</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>81</th><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	81	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
IPA / PAH														
25-Benzo(a)antracene CAS 56-55-3	mg/kg s.s.	0,5	10	0,023	0,005	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
26-Benzo(a)pirene CAS 50-32-8	mg/kg s.s.	0,1	10	0,019	0,006	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
27-Benzo(b)fluorantene CAS 205-99-2	mg/kg s.s.	0,5	10	0,020	0,006	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
28-Benzo(k)fluorantene CAS 207-08-9	mg/kg s.s.	0,5	10	0,007	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
29-Benzo(g,h,i)perilene CAS 191-24-2	mg/kg s.s.	0,1	10	0,029	0,005	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
30-Crisene CAS 218-01-9	mg/kg s.s.	5	50	0,018	0,005	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
31-Dibenzo(a,e)pirene CAS 192-65-4	mg/kg s.s.	0,1	10	0,007	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
32-Dibenzo(a,I)pirene CAS 191-30-0	mg/kg s.s.	0,1	10	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
33-Dibenzo(a,i)pirene CAS 189-55-9	mg/kg s.s.	0,1	10	0,010	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
34-Dibenzo(a,h)pirene CAS 189-64-0	mg/kg s.s.	0,1	10	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
35-Dibenzo(a,h)antracene CAS 53-70-3	mg/kg s.s.	0,1	10	0,009	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
36-Indeno (1,2,3 cd)pirene CAS 193-39-5	mg/kg s.s.	0,1	5	0,017	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
37-Pirene CAS 129-00-0	mg/kg s.s.	5	50	0,024	0,009	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Sommatoria policiclici aromatici (da 25 a 34)	mg/kg s.s.	10	100	0,133	0,027	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Solventi organici aromatici														
Benzene CAS 71-43-2	mg/kg s.s.	0,1	2	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Toluene CAS 108-88-3	mg/kg s.s.	0,5	50	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Etilbenzene CAS 100-41-4	mg/kg s.s.	0,5	50	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Stirene CAS 100-42-5	mg/kg s.s.	0,5	50	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
o-xilene CAS 95-47-6	mg/kg s.s.	-	-	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
m/p-xilene CAS 106-42-3	mg/kg s.s.	-	-	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Sommatoria solventi organici aromatici	mg/kg s.s.	1	100	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Amianto	mg/kg s.s.	1000	1000	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>

Intervento:	Livello progettazione	Elaborato
NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE	PROGETTO DEFINITIVO	ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.
SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI		
ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA		

Tabella 3 – Riepilogo analisi chimiche sulle acque ex tabella 2, Allegato 5 alla Parte IV del D.Lgs. 152/2006

PARAMETRO	U.M.	CSC Tab. 2 All. 5 DLgs 152/06	S01-PZ	S03-PZ	S04-PZ
Alluminio - Aluminum	μg/I	200	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Antimonio - Stibium	μg/I	5	1,1	0,8	0,8
Argento - Silver	μg/l	10	<l0q< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></l0q<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Arsenico - Arsenic	μg/I	10	1,1	0,9	0,7
Berillio - Beryllium	μg/I	4	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Cadmio -Cadmium	μg/I	5	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Cobalto - Cobalt	μg/l	50	0,7	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Cromo totale	µg/I	50	0,3	0,2	0,2
Cromo VI - Chrome VI	μg/I	5	<l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Ferro - Iron	μg/l	200	11,1	14,0	13,7
Manganese	μg/I	50	95,3	113,1	115,6
Mercurio - Mercury	μg/I	20	<loq 3,5</loq 	<loq 0.5</loq 	<loq 0,6</loq
Nichel - Nickel Piombo - Lead	µg/l	10	3,5 <loq< td=""><td>0,5 <loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	0,5 <loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Rame - Copper	μg/I μg/I	1000	<l0q< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
Selenio - Selenium	µg/I	1000	0,2	0,2	<loq< td=""></loq<>
Tallio - Thallium	µg/l	2	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
Zinco - Zinc	μg/I	3000	2,7	3,2	4,7
Inquinanti inorganici	HB/1	3000	2,1	3,2	4,7
Boro - Boron	μκ/Ι	1000	22	<loq.< td=""><td><loq< td=""></loq<></td></loq.<>	<loq< td=""></loq<>
Cianuri liberi	µg/I	50	<loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
Fluoruri	µg/l	1500	144	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
Nitriti	μg/I	500	<l00< td=""><td><loq.< td=""><td><loq< td=""></loq<></td></loq.<></td></l00<>	<loq.< td=""><td><loq< td=""></loq<></td></loq.<>	<loq< td=""></loq<>
Solfati	mg/l	250	55	55	55
IPA / PAH					
29-Benzo(a)antracene CAS 56-55-3	μg/l	0.1	<loq< td=""><td><l0q< td=""><td><l00< td=""></l00<></td></l0q<></td></loq<>	<l0q< td=""><td><l00< td=""></l00<></td></l0q<>	<l00< td=""></l00<>
30-Benzo(a)pirene CAS 50-32-8	μg/I	0,01	<loq< td=""><td><loq.< td=""><td><loq< td=""></loq<></td></loq.<></td></loq<>	<loq.< td=""><td><loq< td=""></loq<></td></loq.<>	<loq< td=""></loq<>
31-Benzo(b)fluorantene CAS 205-99-2	µg/I	0,1	<l0q< td=""><td><loq.< td=""><td><loq< td=""></loq<></td></loq.<></td></l0q<>	<loq.< td=""><td><loq< td=""></loq<></td></loq.<>	<loq< td=""></loq<>
32-Benzo(k)fluorantene CAS 207-08-9	μg/I	0,05	<l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
33-Benzo(g,h,i)perilene CAS 191-24-2	μg/I	0,01	<l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
34-Crisene CAS 218-01-9	μg/l	5	<l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
35-Dibenzo(a,h)antracene CAS 53-70-3	μg/l	0,01	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
36-Indeno(1,2,3-cd)pirene CAS 193-39-5	μg/I	0,1	<loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
37-Pirene CAS 129-00-0	μg/I	50	<l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
38-Sommatoria policiclici aromatici (31,32,33,36)	μg/l	0,1	<l0q< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></l0q<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Composti Organici Aromatici					
Benzene CAS 71-43-2	μg/I	1	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Etilbenzene CAS 100-41-4	μg/I	50	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Stirene CAS 100-42-5	μg/I	25	<loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
Toluene CAS 108-88-3	μg/l	15	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
p-xilene CAS 106-42-3	μg/l	10	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
			100	100	400
PCB #18 CAS 037680-65-2 PCB #28 CAS 007012-37-5	µg/I		<l0q <l0q< td=""><td><l0q <l0q< td=""><td><loq <loq< td=""></loq<></loq </td></l0q<></l0q </td></l0q<></l0q 	<l0q <l0q< td=""><td><loq <loq< td=""></loq<></loq </td></l0q<></l0q 	<loq <loq< td=""></loq<></loq
PCB #31 CAS 016606-02-3	μg/I		<l0q <l0q< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></l0q<></l0q 	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
PCB #51 CAS 016606-02-5 PCB #52 CAS 035693-99-3	µg/I		<l0q< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></l0q<>	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
PCB #44 CAS 041464-39-5	µg/l		<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
PCB #126 CAS 057465-28-8	μg/I μg/I		<l0q< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
PCB #114 CAS 074472-37-0	µg/l		<l0q< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
PCB #101 CAS 037680-73-2	µg/I		<loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
PCB #110 CAS 03/880-73-2	µg/l		<l0q< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
PCB #77 CAS 032598-13-3	µg/I		<l0q< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
PCB #99 CAS 038380-01-7	µg/I		<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
PCB #81 CAS 070362-50-4	μg/I		<l0q< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
PCB #157 CAS 0/0362-50-4 PCB #157 CAS 069782-90-7	µg/I		<l0q< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
PCB #123 CAS 065510-44-3	µg/I		<l0q< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
PCB #118 CAS 031508-00-6	µg/I		<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
PCB #95 CAS 038379-99-6	µg/I		<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
PCB #149 CAS 038380-04-0	µg/l		<l0q< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
PCB #169 CAS 032774-16-6	µg/I		<l0q< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
PCB #105 CAS 032574-10-0	µg/I		<l0q< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
PCB #128 CAS 038380-07-3	µg/I		<l0q< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></l0q<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
PCB #189 CAS 039635-31-9	µg/l		<l0q< th=""><th><l0q< th=""><th><l0q< th=""></l0q<></th></l0q<></th></l0q<>	<l0q< th=""><th><l0q< th=""></l0q<></th></l0q<>	<l0q< th=""></l0q<>
L CD 4103 CW3 033033-31-3	I HRV1		~L0Q	\LUQ	_\CUU

PCB #170 CAS 035065-30-6	μg/l		<loq< th=""><th><l0q< th=""><th><loq< th=""></loq<></th></l0q<></th></loq<>	<l0q< th=""><th><loq< th=""></loq<></th></l0q<>	<loq< th=""></loq<>
PCB #156 CAS 038380-08-4	µg/l		<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB #167 CAS 052663-72-6	μg/l		<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB #151 CAS 052663-63-5	μg/l		<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB #183 CAS 052663-69-1	µg/l		<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
PCB #146 CAS 051908-16-8	µg/l		<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB #153 CAS 035065-27-1	µg/l		<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
PCB #180 CAS 035065-29-3	µg/I		<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB #177 CAS 052663-70-4	µg/l		<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
PCB #138 CAS 035065-28-2	µg/l		<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
PCB #187 CAS 052663-68-0	µg/I		<loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
PCB totali	µg/l	0,01	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
enoli e Clorofenoli					
2-clorofenolo CAS 95-57-8	µg/I	180	<loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
2.4-diclorofenolo CAS 120-83-2	µg/I	110	<loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
2,4,6-Trichlorophenol CAS 88-06-2	µg/I	5	<1.00	<l0q< td=""><td><loq.< td=""></loq.<></td></l0q<>	<loq.< td=""></loq.<>
Pentachlorophenol (PCP) CAS 87-86-5	µg/I	0,5	<loq< td=""><td><loq.< td=""><td><loq< td=""></loq<></td></loq.<></td></loq<>	<loq.< td=""><td><loq< td=""></loq<></td></loq.<>	<loq< td=""></loq<>
drocarburi totali, Idrocarburi totali come n-esano	µg/I	350	<loq.< td=""><td><l0q< td=""><td>230</td></l0q<></td></loq.<>	<l0q< td=""><td>230</td></l0q<>	230
Solventi alifatici clorurati cancerogeni					
Clorometano CAS 74-87-3	µg/I	1,5	<loq< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>
Triclorometano CAS 67-66-3	µg/I	0,15	0.051	0,050	0,051
Cloruro di vinile CAS 75-01-4	µg/I	0,5	<loq< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>
1.2-dicloroetano CAS 107-06-2	µg/I	3	<loq< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></loq<>	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>
1,1-dicloroetene CAS 75-35-4	µg/I	0.05	<1.00	<1.00	<1.00
Tricloroetilene CAS 79-01-6	µg/l	1,5	0,093	0,088	0,095
Esaclorobutadiene CAS 87-68-3	µg/I	0,15	<loq< td=""><td><l0q< td=""><td><loq.< td=""></loq.<></td></l0q<></td></loq<>	<l0q< td=""><td><loq.< td=""></loq.<></td></l0q<>	<loq.< td=""></loq.<>
Tetracloroetilene CAS 127-18-4	µg/l	1,1	0,66	0,61	0,67
Sommatoria organoalogenati	µg/l	10	0,804**	0,748**	0,816**
Solventi alifatici clorurati non cancerogeni					
1,1-dicloroetano CAS 75-34-3	µg/l	810	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
1,2-dicloroetilene (somma)	µg/l	60	0**	0**	0**
1,2-dicloropropano CAS 78-87-5	µg/l	0,15	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
1,1,2-tricloroetano CAS 79-00-5	μg/l	0,2	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
1,2,3-tricloropropano CAS 96-18-4	µg/l	0,001	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
1,1,2,2-tetracloroetano CAS 79-34-5	µg/l	0,05	<loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
Solventi alifatici alogenati cancerogeni					
Tribromometano CAS 75-25-2	μg/I	0,3	<loq.< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq.<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
1,2-dibromoetano CAS 106-93-4	μg/l	0,001	<loq< td=""><td><loq< td=""><td><l0q< td=""></l0q<></td></loq<></td></loq<>	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
Dibromoclorometano CAS 594-18-3	µg/I	0,13	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Bromodiclorometano CAS 75-27-4	μg/l	0,17	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Clorobenzeni					
Clorobenzene CAS 108-90-7	μg/I		<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
1,2-diclorobenzene CAS 95-50-1	μg/I	270	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
1,4-diclorobenzene CAS 106-46-7	µg/I	0,5	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
1,2,4-triclorobenzene CAS 120-82-1	µg/I	190	<l0q< td=""><td><l0q< td=""><td><l0q< td=""></l0q<></td></l0q<></td></l0q<>	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>
1,2,4,5-tetraclorobenzene CAS 95-94-3	µg/I	1,8	<loq< td=""><td><loq.< td=""><td><loq< td=""></loq<></td></loq.<></td></loq<>	<loq.< td=""><td><loq< td=""></loq<></td></loq.<>	<loq< td=""></loq<>
Pentaclorobenzene CAS 608-93-5	µg/I	5	<loq.< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq.<>	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
Esaclorobenzene CAS 118-74-1	µg/I	0,01	<loq< td=""><td><l0q< td=""><td><loq< td=""></loq<></td></l0q<></td></loq<>	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
Amianto	fibre/I		0	0	0

NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE
SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI
ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA

Livello progettazione
PROGETTO DEFINITIVO

Elaborato

ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

2.1 Conclusioni per le trincee esplorative – verifica potenziale contaminazione

Di seguito si tratta la valutazione delle analisi chimiche eseguite in fase di progettazione definitiva per verificare la potenziale contaminazione dei suoli e delle acque di falda nell'area di intervento, a fronte del rinvenimento di materiali di depositi antropici in matrice terrosa rinvenuti dal comune di Arcugnano tra Via Pilla e Via Meucci nell'ambito di alcuni interventi previsti per la realizzazione di viabilità pubblica, che ha portato all'esecuzione nel 2014 dell'analisi di rischio ai sensi del D.Lgs. 152/06 e ss.mm.ii. per un sito potenzialmente contaminato ubicato in via Pilla, nella Z.A.I. di Arcugnano (VI).

Per quanto ai <u>Suoli</u> analizzati all'interno della Zona Industriale di Nogarazza in corrispondenza delle future aree di parcheggio (trincee PZ5, PZ6, PZ7 e PZ8, vedi Figura), non sono stati rilevati superamenti dei limiti previsti dalla Colonna B, Tabella 1, allegato 5 alla parte IV del D.Lgs. 152/2006, ad eccezione di un unico superamento dei valori delle CSC di Colonna B, Tabella 1, allegato 5 alla parte IV del D.Lgs. 152/2006 per il parametro Arsenico, in corrispondenza della trincea esplorativa PZ05 nel campione prelevato tra 1.0 e 2.0 m da p.c. (campione PZ05-CA2) con concentrazione pari a 64,9 mg/kg.

NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE
SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI
ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA

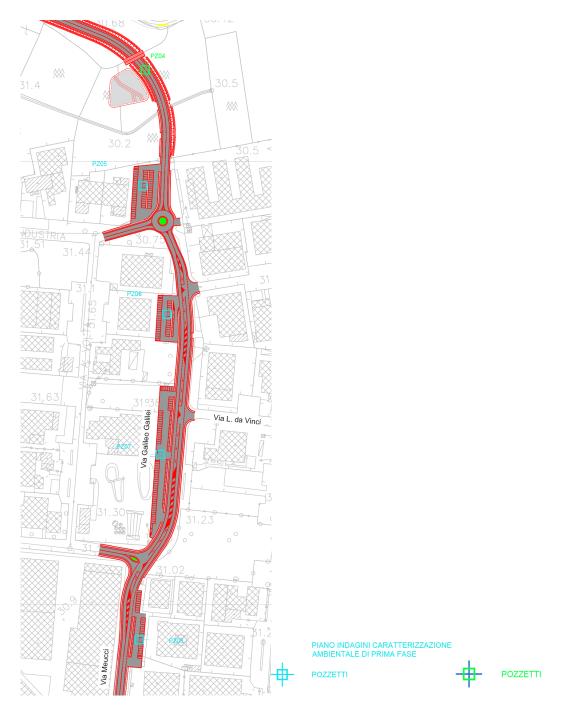


Figura. Ubicazione delle trincee esplorative nelle future aree di parcheggio

NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE
SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI
ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA

Livello progettazione

PROGETTO DEFINITIVO

Elaborato

ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

Per i terreni prelevati nella trincea esplorativa PZ4, ubicata a nord della zona industriale in terreno agricolo, i valori soglia di riferimento sono quelli a uso verde/residenziale di Colonna A della Tabella 1, allegato 5 alla parte IV del D.Lgs. 152/2006. In questo caso le analisi chimiche evidenziano superamenti per i parametri Arsenico, Cadmio e 2-clorofenolo. La presenza di 2-clorofenolo, nel solo campione superficiale PZ4-CA1, è riconducibile all'utilizzo di diserbanti per la produzione agricola, essendo la famiglia dei clorofenoli impiegata per la preparazione di insetticidi e diserbanti.

Facendo riferimento allo studio "*Metalli e metalloidi nei suoli del Veneto*" del 2019, realizzato da ARPAV, nel caso in esame il sito ricade nell'ambito del sistema deposizionale Colli Berici (RB) per il quale è stato determinato un valore di fondo di Arsenico pari a 39 mg/kg; con valore di fondo si fa riferimento al valore del 95° percentile determinato all'interno della stessa unità deposizionale. Basandosi su questo background Il superamento del limite tabellare per l'elemento Arsenico riscontrato, è da imputare a fenomeni naturali che interessano la gran parte del territorio regionale.

Livello progettazione

PROGETTO DEFINITIVO

Elaborato

ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE
SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI
ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA

Unità fisiografiche/deposizionali	Sb	As	Be	Cd	Co	Cr	Hg	Ni	Pb	Cu	Se	Sn	٧	Zn
Alpi del basamento cristallino e metamorfico (MA)	2,6*	19*	1,6*	0,52	22	68	0,40*	46	90	48	nd	nd	69*	150
Alpi su dolomia (MD)	2,3*	24*	1,4*	1,6	19	84	0,23*	46	61	39	0,50*	2,9*	96*	138
Alpi su litotipi silicatici (MS)	2,1*	13*	2,2*	0,52*	31	72	0,19*	37	55	72	nd	nd	184*	122
Alpi su Formazione di Werfen (MW)	2,1*	30*	2,2*	1,8	19	73	0,70*	41	128	34	1,1*	2,5*	92*	148
Prealpi su calcari duri (SA)	3,3	27	2,7	3,8	36	123	0,33	92	101	96	1,1	4,9	175	220
Prealpi su calcari marnosi (SD)	2,6	17	2,3	2,2	35	175	0,28	148	133	88	0,81	3,4	138	197
Prealpi su basalti (LB)	1,6	14	2,1	0,56	79	313	0,15	251	57	99	0,47	4,2	212	177
Prealpi su calcareniti (LC)	1,8*	34*	2,7*	1,9*	39*	172*	0,13*	122*	39*	50*	0,74*	3,3*	162*	128*
Rilievi collinari (RR)	1,1	18	1,7	0,90	27	102	0,36	66	48	112	0,59	3,6	100	141
Colline su calcareniti (RA)	3,9	89	2,1	0,96	14	298	0,13	67	57	52	0,55	4,0	303	176
Colli Berici (RB)	4,5	39	2,8	1,8	31	199	0,14	111	72	81	0,59	4,4	226	145
Tagliamento (T)	1,1	15	1,8	0,59	12	68	0,26	43	30	49	0,76	3,1	88	90
Piave (P)	1,0	14	1,6	0,70	15	62	0,26	51	37	192	0,51	3,9	86	120
Brenta (B)	2,0	46	2,1	0,93	16	63	0,51	38	56	110	0,36	6,3	84	143
Adige (A)	1,6	40	1,5	0,93	19	124	0,21	103	57	97	0,75	4,2	80	150
Po (O)	1,3	28	1,7	0,54	20	162	0,08	130	34	66	0,91	3,7	89	111
Conoidi pedemontane calcaree (CC)	0,84	13	1,6	0,92	22	103	0,21	81	42	141	0,40	3,7	84	113
Conoidi dell'Astico (CA)	3,3	25	1,8	0,74	25	84	0,36	66	65	101	0,52	7,2	190	150
Conoidi pedemontane del sistema Leogra- Timonchio (CL)	2,7	28	1,9	0,74	27	90	0,18	47	90	90	0,37	6,0	129	195
Depositi fluviali del sistema Agno-Guà (CG)	1,9	21	1,5	0,66	50	190	0,10	160	88	103	0,42	3,4	151	160
Costiero nord-orientale (DP)	0,6	11	0,6	0,25	6,0	32	0,37	19	38	45	0,32	2,0	43	70
Costiero meridionale (DA)	1,0	23	1,1	0,26	16	166	0,13	105	42	48	0,68	4,7	70	158

Anche per il parametro Cadmio, lo studio ARPAV evidenzia come nell'unità Colli Berici sono presenti valori massimi superiori alle CSC e non esclusi come outliers (si vedano i valori di 99° percentile in tabella). Pure per questo metallo, tali valori sono imputabili alla dotazione naturale nei suoli in quanto anche i valori mediani risultano elevati. Il risultato delle analisi relative ai campioni prelevati nel punto PZ4 può essere interpretabile come presenza "endemica" di cadmio.

PROGETTO DEFINITIVO

Elaborato

NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE
SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI
ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA

ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

				R	В			
	N dati	Media	Dev.Std.	Mediana	Quartile Inferiore	Quartile Superiore	95° Percentile	99° Percentile
Sb	30	1,66	1,38	1,2	0,83	1,9	4,5	5,4
As	30	23,5	11,2	25	15	33	39	42
Be	30	1,60	0,71	1,5	1,0	2,3	2,8	3,1
Cd	34	0,79	0,58	0,67	0,25	1,2	1,8	2,2
Со	34	18,6	7,75	18	13	24	31	34
Cr	34	109,1	46,4	101	85	119	199	242
Hg	30	0,08	0,05	0,08	0,06	0,11	0,14	0,23
Ni	34	68,9	24,5	67	53	87	111	125
Pb	31	32,9	20,6	26	20	44	72	85
Cu	32	42,5	25,8	38	26	46	81	130
Se	30	0,39	0,13	0,37	0,33	0,48	0,59	0,60
Sn	30	2,52	1,20	2,5	1,5	3,4	4,4	5,4
V	30	114,0	48,6	107	86	122	226	234
Zn	34	100,7	30,5	102	79	119	145	171

Infine, relativamente alla matrice acque di falda, nei campioni prelevati nei 3 piezometri collocati nella direttrice NO (S01-PZ e S03-PZ) - SE (S04-PZ) in posizione monte-valle rispetto alla zona industriale, sono stati rilevati superamenti dei limiti previsti dalla Tabella 2, allegato 5 alla parte IV del D.Lgs. 152/2006, per il solo parametro Manganese, in genere elemento presente in forma arricchita come fondo naturale negli acquiferi della media e bassa pianura veneta.

3 BILANCIO MATERIE

Gli scavi previsti in progetto sono complessivamente 50.721 m³. Sono dovuti alla realizzazione delle fondazioni su pali di grande diametro delle spalle e pile del Ponte su fiume Retrone, agli scavi per scotico e bonifica per la realizzazione del corpo stradale e dei parcheggi e per la realizzazione delle opere idrauliche.

Per quanto riguarda i fabbisogni, questi ammontano a circa **58.267 m³** di materiale per la sistemazione in rilevato e riempimenti vari.

PROGETTO DEFINITIVO

Elaborato

ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA

Nella tabella seguente sono indicati tutti i valori di produzione terre da scavo, dei fabbisogni per rilevati, rinterri, calcestruzzi etc., le quantità da conferire a discarica dei terreni provenienti da scavo e dalle demolizioni.

	ALTERNATIVA
	SELEZIONATA
	Quantità m³
Scavi tot.	50.721
Scavi corpo stradale (sbancamenti, scotico, bonifica)	30.014
Scavi di fondazione e per tubazioni	15.585
Scavi per pali e micropali	5.122
Riutilizzo (per terreni vegetali e riempimenti)	15.139
Reimpiego per terreno vegetale	3.550
Reimpiego per riempimenti	11.589
Fabbisogni	58.267
Anticapillare	10.055
Rilevato	32.787
Riempimenti (da materiale scavato)	11.589
Pietrame	186
Materiale per pali in ghiaia	100
Fabbisogni Pavimentazioni	29.806
misto granulare	6.643

Livello progettazione
PROGETTO DEFINITIVO

Elaborato

ARCUGN-VNHT-GEN-S0_ZZ-ZZ00_Z-TR-CW-0005.

NUOVO COLLEGAMENTO STRADALE TRA LA TANGENZIALE
SUD DI VICENZA E LA VIABILITÀ ORDINARIA DEI COMUNI DI
ARCUGNANO E ALTAVILLA IN PROVINCIA DI VICENZA

	1 4 707
misto cementato	4.787
Usura	10.994
Binder	245
Base	4.999
Base Binder	2.138
Fabbisogni CLS - acciai	
Magrone	917
Cls 25/30	1.005
Cls 32/40	4.533
Cls 35/45	2.592
Acciaio	1.857.422 (kg)
Rete elettrosaldata	27.969(kg)
DISCARICA:	
Demolizioni	
Pavimentazioni esistenti	10.126
Cls	851
Strutture in acciaio	20.640 (kg)
Terre a discarica	36.610
Codice CER17.05.04	34.723
Terre pericolose codice CER 17.05.03	1.887

