
REGIONE DEL VENETO

PROVINCIA DI VICENZA COMUNE DI COSTABISSARA

PROGETTO DI AMPLIAMENTO DI 1.000 MQ DELLA SUPERFICIE DI VENDITA DI UN ESERCIZIO COMMERCIALE ESISTENTE MEDIANTE REVISIONE DEL LAYOUT INTERNO

ELABORATO B

STUDIO DI IMPATTO VIABILISTICO

Proponente:

Supermercati Tosano Cerea S.r.l. Via Palesella n. 137053 Cerea (VR) tel: 0442 80888

Progettisti:

Pagliarusco Architetti Associati Studio di architettura Via dei Carpani n. 11 36075 Montecchio Maggiore Tel. 0444 699274 Fax 0444 695010 info@pagliarusco.it

Estensori Studio Preliminare Ambientale

eAmbiente S.r.l.
c/o Parco Scientifico
Tecnologico
VEGA - ed. Auriga
via delle Industrie, 9
30175 Marghera (VE)
Tel. 041 5093820;
Fax 041 5093886
www.eambiente.it;
info@eambiente.it

PLAN S.R.L.
società di ingegneria
Via Vittorini 15/B
46100 - MANTOVA
Tel 0376-270631
Fax 0376-271697
mail: info@planstudio.biz
pec: plansrl@legalmail.it
www.planstudio.biz

Valutazioni ambientali Commessa: C18-005745

00	31/07/2018	Prima Emissione	A_VIAB_R00	AC	SR	SR
Rev.	Data	Oggetto	File	Redatto	Verificato	Approvato

INDICE

1. PRE/	MESS.	A	3
2. INQ	UADF	RAMENTO TERRITORIALE	7
3. ANA	ALISI I	DELLA VIABILITÀ ATTUALE	12
3.1	Ass	SI VIARI	13
3.2	Inte	ersezioni	28
3.3	TRA	ASPORTO PUBBLICO	35
4. ANA	ALISI I	DELLA DOMANDA DI TRAFFICO	38
4.1	Rile	EVAZIONI AUTOMATICHE	38
4.2	Rile	evazioni automatiche di riscontro – anno 2017	40
4.3	Rile	EVAZIONI MANUALI	42
4.4	Са	LCOLO DEL FATTORE DELL'ORA DI PUNTA (PHF)	54
4.5	IND	AGINE CORDONALE O/D	57
4.5	5. 1	Indagine cordonale O/D venerdì	59
4.5	5.2	Indagine cordonale O/D sabato	63
5. INTE	RVEN	NTO DI PROGETTO – 7.000 MQ SV	67
6. COI	MPAT	'IBILITA' INFRASTRUTTURALE	68
6.1	Pia	no Territoriale di Coordinamento Provinciale di Vicenza	68
6.2	PIA	no di Assetto del Territorio del Comune di Costabissara	69
6.3	PIA	no degli Interventi del Comune di Costabissara	70
7. SCE	NARI	O DI PROGETTO	71
		NDOTTI E FLUSSI FUTURI – SCENARIO AUTORIZZATO 6.000 N	
		NDOTTI E FLUSSI FUTURI – SCENARIO DI PROGETTO 7.000 N	
9.1	FLU	issi indotti	75
9. i	1.1	Flussi indotti dall'area commerciale	75
9. 1	1.2	Flussi indotti dall'area artigianale	77
9. 1	1.3	Flussi indotti dall'area residenziale	77
9. i	1.4	Flussi indotti complessivi	78
9. 1	1.5	Distribuzione dei flussi indotti	79
9. 1	1.6	Flussi indotti venerdi	81

9.1	.7	Flussi indotti sabato	82
9.2	FLUS	SSI FUTURI	83
9.2	. 1	Flussi futuri venerdì	84
9.2	.2	Flussi futuri sabato	86
10. VER	RIFICI	HE ANALITICHE - DEFINIZIONI	88
10.1	Def	INIZIONI	88
10.2	Live	ELLI DI SERVIZIO DEGLI ASSI STRADALI	90
10.3	Cri	TERI DI VERIFICA DELLE ROTATORIE	91
10.	3.1	Analisi della capacità	92
10.	3.2	I modelli per la verifica di capacità delle intersezioni a rotatoria	97
10.4	Live	ELLI DI SERVIZIO SECONDO HCM PER LE ROTATORIE	99
11. VER	RIFICI	HE ANALITICHE	100
11.1	Los	ASTE STRADALI	100
12. VER	RIFICI	HE INTERSEZIONI	101
12.1	Roi	TATORIA TRA LA SP 46 – SP 349 – SP 41 (BOTTEGHINO)	101
12.	1.1	Scenario di progetto - venerdì	102
12.	1.2	Scenario di progetto - sabato	103
12.2	Roi	atoria SP 46 – via De Gasperi	105
12.	2.1	Scenario di progetto - venerdì	106
12.	2.2	Scenario di progetto - sabato	107
12.3	LOS	S rotatorie	108
13. VER	RIFICI	HE CON MODELLO DI MICROSIMULAZIONE	111
13.1	Мо	TIVI DELL'APPROCCIO MICROSIMULATIVO	111
13.2	Stri	JMENTI E METODOLOGIA	112
13.3	Са	RATTERISTICHE DELLE MICROSIMULAZIONI ESEGUITE	112
13.4	Мо	DELLAZIONE DELL'OFFERTA	114
13.5	For	MATO E DATI DI OUTPUT	115
13.6	Mic	CROSIMULAZIONI ESEGUITE	116
13.	6.1	Valutazioni di rete	119
13.	6.2	Valutazioni di nodo	120
14. CO	NCL	JSIONI	122
A. ELA	BORA	ATI GRAFICI	123
B. DAT	I DI T	RAFFICO	125

1. PREMESSA

L'analisi di seguito riportata è riferita all'ampliamento di 1.000 mq di superficie di vendita di grande struttura di vendita da attivarsi in Comune di Costabissara (VI), già abilitata per una superficie di vendita di 6.000 mq, giusta autorizzazione rilasciata dal Comune di Costabissara, in conformità alla deliberazione della conferenza di servizi regionale tenutasi in data 13.03.2018 a norma dell'art. 19 L.R. Veneto n. 50/2012 e delle D.G.R. n. 455 del 10.04.2013 e n. 1047 del 18.06.2013.

E' opportuno evidenziare come le previsioni del vigente PI del Comune di Costabissara stabiliscono che la grande struttura summenzionata possa essere attivata nell'ambito del "PUA Vabene" (al cui interno ricade la medesima) per una superficie di vendita fino a 7.000 mq subordinatamente alla sistemazione dell'incrocio in località il "Botteghino", in conformità al progetto già approvato dalla Provincia di Vicenza e in corso di realizzazione, tenuto conto della situazione infrastrutturale, dei flussi di traffico attuali ed indotti.

A tal proposito si precisa che in considerazione della carenza di risorse finanziarie da parte della Provincia di Vicenza ed il conseguente ritardo nella realizzazione dell'intervento viario in località Botteghino di Motta di Costabissara, la società Supermercati Tosano Cerea srl si è recentemente proposta quale stazione appaltante/committente delle opere di sistemazione viaria di cui al progetto definitivo approvato dalla Giunta Provinciale con la deliberazione nr. 348/2011, assumendo - a proprie cure e spese - i relativi costi di progettazione esecutiva, appalto, direzione lavori e sicurezza di cantiere e collaudo delle opere stesse, e ciò a norma dell'art. 20 D. Lgs. n. 50/2016.

Con deliberazione del Consiglio Provinciale n. 4 del 13.03.2017 è stata accolta la proposta della Supermercati Tosano Cerea S.r.l., e

conseguentemente in data 11.12.2017 è stata sottoscritta l'apposita convenzione regolante i rispettivi obblighi ed oneri.

In particolare al fine di dare attuazione alle condizioni di sostenibilità dell'intervento, di cui allo scenario previsto dei 7.000 mq di superficie di vendita, la ditta Supermercati Tosano si è impegnata a:

- predisporre e consegnare alla Provincia il progetto esecutivo dell'opera in conformità al progetto definitivo approvato dalla succitata deliberazione G.P. n. 348/2011, così come medio tempore aggiornato ed integrato;
- realizzare l'intervento di sistemazione viaria di cui al suddetto Progetto entro e non oltre 24 (ventiquattro) mesi decorrenti dalla consegna delle aree.

Più precisamente in esecuzione di detta convenzione la Supermercati Tosano incaricava l'arch. Ilario Faresin di Vicenza, già estensore del progetto definitivo. Il progetto esecutivo veniva quindi approvato dai competenti organi provinciali in data 30.03.2018 con determina del dirigente lavori pubblici n. 276. Successivamente venivano consegnate da parte della Provincia di Vicenza alla stazione appaltante le aree oggetto del predetto intervento, giusta verbale di consegna sottoscritto in data 23.04.2018, con contestuale rilascio da parte della Supermercati Tosano delle previste polizze assicurative a garanzia degli obblighi assunti con la convenzione.

Allo stato attuale i lavori per la riorganizzazione dell'intersezione del "Botteghino" sono in corso.

Lavori in corso intersezione "Botteghino"

L'analisi di seguito descritta quindi evidenzia la sostanziale invariabilità dei flussi di traffico lungo la SP 46 rispetto a quanto rilevato negli anni precedenti, consentendo quindi di avvalorare le conclusioni riportate negli elaborati relativi alla Verifica di Assoggettabilità a VIA del 2013, dimostrando la sostenibilità dell'intervento anche per i 7.000 mq di vendita. D'altronde il nuovo procedimento di verifica di assoggettabilità a VIA si rende necessario unicamente in ossequio alla previsione di cui all'art. 22 comma 1 lettera b) della L.R. Veneto n. 50/2012, giacché in primo luogo l'intervento edilizio già avallato dalla Commissione Provinciale VIA rimane sostanzialmente invariato ampliandosi – lo si ripete - di soli mq 1000 la superficie di vendita assentita ed in secondo luogo non consta che medio tempore siano state attivate o autorizzate ulteriori attività impattanti sui flussi del traffico nel tratto in questione.

Si segnala altresì che nell'anno 2016 è stata già completata, sempre a cura e spese della ditta Supermercati Tosano, la rotatoria lungo la SP 46, in

corrispondenza di via De Gasperi, che costituirà un ulteriore accesso all'ambito di intervento, oltre alla rotatoria nord del Botteghino.

Lavori conclusi intersezione SP 46 - Via De Gasperi – viabilità di lottizzazione

2. INQUADRAMENTO TERRITORIALE

L'area oggetto del presente studio si localizza a nord-ovest della città di Vicenza, nel contesto territoriale compreso tra l'Autostrada A4 "Serenissima" Milano - Venezia e l'Autostrada A31 "Valdastico", all'interno del territorio comunale di Costabissara in provincia di Vicenza.

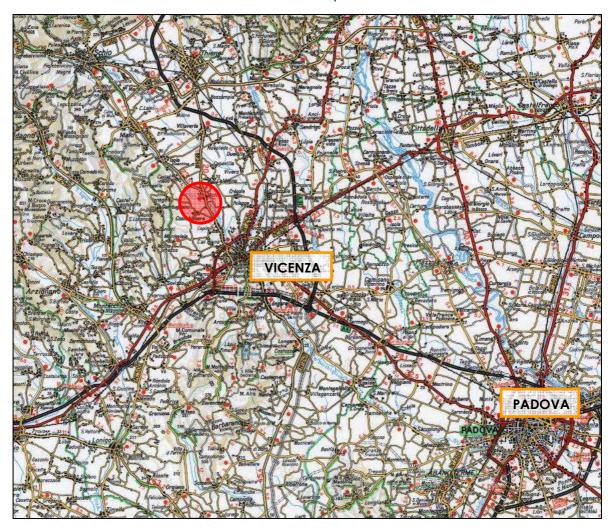


Figura 1 - Inquadramento territoriale

La viabilità principale che delimita la zona è rappresentata:

 Autostrada A31 "Valdastico". L'A31, il cui percorso si sviluppa per circa 40 km, costituisce una delle autostrade più corte della rete viaria italiana, ma non per questo di minore importanza. L'autostrada, avente due corsie per senso di marcia, rappresenta un

asse di cruciale interesse strategico: attraversa da nord a sud la provincia di Vicenza, partendo dal capoluogo e terminando a Piovene Rocchette, e rappresenta la principale via di comunicazione per il traffico pesante e leggero generato dall'area dei comuni di Schio, Thiene e Bassano verso l'esterno. Nei pressi di Vicenza poi è presente l'interconnessione con l'A4, che garantisce il collegamento diretto con Milano e Venezia. In futuro inoltre è previsto il prolungamento dell'A31 fino all'interconnessione con la strada statale 434 Transpolesana a pochi km dall'A13, così da agevolare i collegamenti con l'Emilia Romagna.

Figura 2 – Autostrada A31 e svincolo A31-SR 53

• Autostrada A4 "Serenissima". L'A4 costituisce il principale asse di collegamento del nord Italia, attraversando da ovest ad est l'intera Pianura Padana. La sede stradale è costituita principalmente da tre corsie per senso di marcia ed una corsia d'emergenza. Presenta numerose connessioni con le altre arterie autostradali. Attualmente risulta una delle strade più trafficate d'Italia, rivestendo inoltre un ruolo fondamentale anche per i collegamenti a livello europeo.



Figura 3 – Svincolo A31-A4 e tratto A4

Il collegamento tra queste due principali arterie stradali ed il territorio (paesi e frazioni) avviene con strade provinciali e locali di rango minore:

• la strada provinciale 46 del Pasubio (SP 46) è una strada di importanza interregionale che partendo dalla periferia nord-ovest della città, risale verso nord toccando i comuni di Costabissara, Isola Vicentina, Malo, Schio, Torrebelvicino, Valli del Pasubio e la località di S. Antonio; entra poi in Trentino Alto Adige terminando infine a Rovereto, dove si immette nella strada statale 12 dell'Abetone e del Brennero. Tale arteria si collega al casello autostradale di Vicenza Ovest grazie al tratto provinciale SP 46racc, anche chiamato "Raccordo del Sole".



Figura 4 – Raccordo del Sole SP 46racc

- la SP 248 "Marosticana", che collega la zona di Bassano del Grappa al capoluogo della Provincia di Vicenza, intersecando l'Autostrada A31 "Valdastico" nei pressi dell'abitato di Dueville. Questa fondamentale via di comunicazione permette di raggiungere il centro abitato di Caldogno, mediante due strade provinciali di minore importanza, la SP 101 e la SP 41. Proprio quest'ultima approda al crocevia oggetto del presente studio viabilistico, come si può notare nella figura seguente;
- la **SP 349** è un tratto della strada statale 349 di Val d'Assa e Pedemontana Costo (SS 349), che in Veneto diventa la strada provinciale 349 Costo (SP 349).

Figura 5 - Inquadramento stradale

Appare evidente l'importanza strategica dell'area considerata, che viene a rappresentare uno dei principali punti di passaggio per i veicoli che si spostano lungo le seguenti direzioni:

- Autostrada A4 e Vicenza Malo;
- Autostrada A4 e Vicenza Schio;
- Autostrada A4 e Vicenza Thiene;

Le direttrici principali sono evidenziate nella figura seguente:

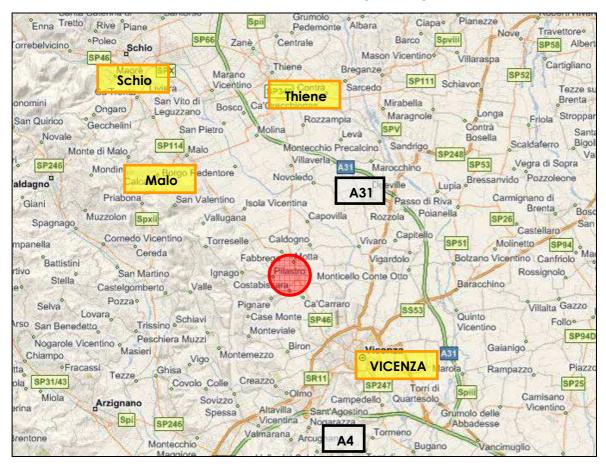


Figura 6 – Direttrici principali

3. ANALISI DELLA VIABILITÀ ATTUALE

Nel presente capitolo vengono descritte le principali arterie stradali interessanti l'area oggetto di studio mediante una breve descrizione qualitativa delle infrastrutture viarie.

Lo studio trasportistico in oggetto si presenta come una serie di attività che prevedono:

- schematizzazione della rete stradale, al fine di descrivere nel modo più completo possibile i flussi di traffico nell'intera area di studio;
- 2. analisi delle principali intersezioni nell'intorno dell'area in oggetto;
- 3. l'individuazione di eventuali interventi infrastrutturali in progetto o in fase di realizzazione.

La ricostruzione dello stato di fatto è il punto di partenza dell'intero studio, ed è finalizzato a conseguire una descrizione verosimile della realtà attuale allo scopo di evidenziarne le eventuali criticità e i punti di forza.

Costabissara dista circa 8 chilometri dal capoluogo della Provincia e conta varie località all'interno dei suoi confini comunali, tra le quali la frazione Motta, situata a 2,2 chilometri a Nord-Est del centro abitato di Costabissara lungo la SP 46.

A tal proposito vengono riportate, nelle pagine che seguono, delle schede tecniche con la descrizione degli assi stradali di interesse localizzati indicativamente nel raggio di 1.000 m dell'area oggetto del presente studio, in modo da consentire una visione complessiva della viabilità della zona.

12

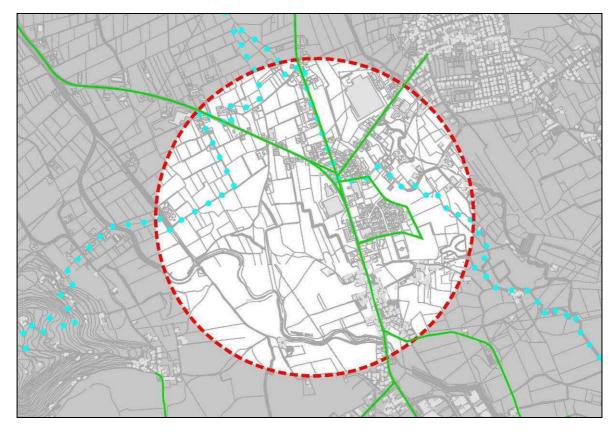
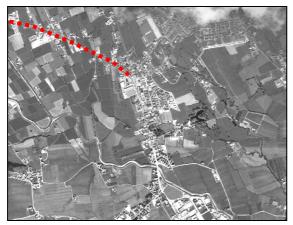


Figura 7 – Area analizzata

3.1 ASSI VIARI

Le strade più importanti che confluiscono nell'area oggetto di studio sono le seguenti:

- 1. Via Rovereto, SP 46 diramazione Nord-Ovest (dir. Schio);
- 2. Strada Statale Pasubio, SP 46 proveniente da Sud (dir. Vicenza);
- 3. Via Pasubio, proveniente da Nord-Est (dir. Caldogno);
- 4. Via Battisti, SP 349, proveniente da Nord (dir. Thiene);
- 5. un accesso a varie attività commerciali-produttive;
- 6. via Preazzi;
- 7. via Monte Ortigara, che collega via Rovereto alla SP 349;
- 8. Via Alcide De Gasperi;
- 9. Via John Fitzgerald Kennedy;
- 10. Via Benedetto Croce:



- 11. Via San Cristoforo;
- 12. Via IV Novembre;
- 13. Via Monte Grappa.

Nelle pagine seguenti si riporta una descrizione sommaria delle strade citate e indicate nell'immagine precedente.

1 – SP 46 via Rovereto



Tipo di strada	Provinciale
Funzione attuale	Collegamento
Larghezza carreggiata	9.00 m
Numero corsie	2
Larghezza corsie	4.50 m
Senso di circolazione	Doppio senso
Marciapiedi	Si
Illuminazione	Si
Pista ciclabile	Si
Presenza di sosta a margine	no
Stato della pavimentazione	Buono

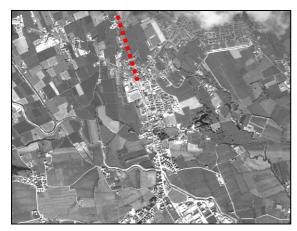
Tale arteria risulta il principale collegamento tra i Comuni di Malo e Schio verso Vicenza.

2 – SP 46 Strada Statale Pasubio

Tipo di strada	Provinciale
Funzione attuale	Collegamento
Larghezza carreggiata	9.00 m
Numero corsie	2
Larghezza corsie	4.50 m
Senso di circolazione	Doppio senso
Marciapiedi	si
Illuminazione	si
Pista ciclabile	si
Presenza di sosta a margine	no
Stato della pavimentazione	Buono
	· · · · · · · · · · · · · · · · · · ·

Questa strada rappresenta il collegamento tra Schio e Thiene con Vicenza. I flussi presenti su questa arteria sono notevoli vista la dimensione dei poli abitativi che soddisfa.

3 – via Pasubio



Tipo di strada	Provinciale
Funzione attuale	Ingresso al centro di Caldogno
Larghezza carreggiata	7.50 m
Numero corsie	2
Larghezza corsie	3.75 m
Senso di circolazione	Doppio senso
Marciapiedi	Si
Illuminazione	Si
Pista ciclabile	Si
Presenza di sosta a margine	no
Stato della pavimentazione	Buono

Attraverso la SP 41 si accede al centro abitato di Caldogno. Su tale arteria sono presenti diversi attraversamenti pedonali e nei pressi dell'ingresso al centro è presente una rotatoria di medie dimensioni.

4 – SP 349 via Battisti

Tipo di strada	Provinciale
Funzione attuale	Collegamento
Larghezza carreggiata	8.00 m
Numero corsie	2
Larghezza corsie	4.00 m
Senso di circolazione	Doppio senso
Marciapiedi	no
Illuminazione	si
Pista ciclabile	no
Presenza di sosta a margine	no
Stato della pavimentazione	Buono

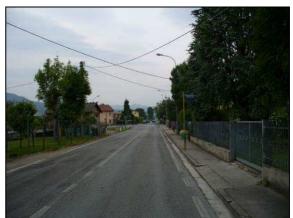
Questa strada collega il centro abitato di Thiene con il capoluogo di provincia.

5 – accesso attività commerciali e produttive

Tipo di strada	Locale
Funzione attuale	Ingresso ad un parcheggio
Larghezza carreggiata	8.00 m
Numero corsie	2
Larghezza corsie	4.00 m
Senso di circolazione	Doppio senso
Marciapiedi	Si
Illuminazione	Si
Pista ciclabile	no
Presenza di sosta a margine	Si
Stato della pavimentazione	Buono

Suddetto ramo rappresenta l'accesso ad alcune attività commerciali e produttive.

6 – via Preazzi


Tipo di strada	Locale
Funzione attuale	Ingresso ad un quartiere
Larghezza carreggiata	6.00 m
Numero corsie	2
Larghezza corsie	3.00 m
Senso di circolazione	Doppio senso
Marciapiedi	si
Illuminazione	si
Pista ciclabile	no
Presenza di sosta a margine	no
Stato della pavimentazione	Discreto

Essa rappresenta l'accesso ad un quartiere della località di Motta.

7 – via Monte Ortigara

Tipo di strada	Locale
Funzione attuale	Collegamento
Larghezza carreggiata	7.50 m
Numero corsie	2
Larghezza corsie	3.75 m
Senso di circolazione	Doppio senso
Marciapiedi	Si
Illuminazione	Si
Pista ciclabile	no
Presenza di sosta a margine	no
Stato della pavimentazione	Buono

Essa rappresenta il collegamento tra la SP 46 in direzione Schio e la SP 349 in direzione Thiene. Viene utilizzata come by-pass dell'intersezione per i flussi di scambio tra Thiene, Schio e Caldogno, senza che gli stessi impegnino l'intersezione posta a sud.

8 – via Alcide De Gasperi

Tipo di strada	Locale
Funzione attuale	Accesso all'area residenziale
Larghezza carreggiata	7.00 m
Numero corsie	2
Larghezza corsie	3.50 m
Senso di circolazione	Doppio senso
Marciapiedi	si
Illuminazione	si
Pista ciclabile	si
Presenza di sosta a margine	no
Stato della pavimentazione	Buono

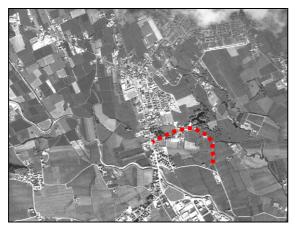
Rappresenta la porzione sud della viabilità che cinge la lottizzazione residenziale sviluppatasi ad est della SP 46.

9 – via John Fitzgerald Kennedy

Tipo di strada	Locale
Funzione attuale	Accesso all'area residenziale
Larghezza carreggiata	6.00 m
Numero corsie	2
Larghezza corsie	3.00 m
Senso di circolazione	Doppio senso
Marciapiedi	Si
Illuminazione	Si
Pista ciclabile	No
Presenza di sosta a margine	no
Stato della pavimentazione	Discreto

E' una viabilità interna alla lottizzazione residenziale e si connette direttamente con la SP 46.

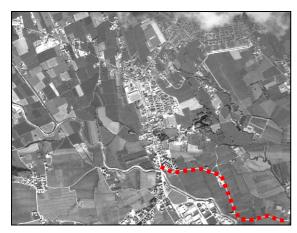
10 – via Benedetto Croce



Tipo di strada	Locale
Funzione attuale	Accesso all'area residenziale
Larghezza carreggiata	7.00 m
Numero corsie	2
Larghezza corsie	3.50 m
Senso di circolazione	Doppio senso
Marciapiedi	Si
Illuminazione	Si
Pista ciclabile	No
Presenza di sosta a margine	Si
Stato della pavimentazione	Buono

Rappresenta la porzione est della viabilità che cinge la lottizzazione residenziale sviluppatasi ad est della SP 46.

11 – via San Cristoforo



Tipo di strada	Locale
Funzione attuale	Viabilità locale
Larghezza carreggiata	5.00 m
Numero corsie	Corsia unica
Larghezza corsie	5.00 m
Senso di circolazione	Doppio senso
Marciapiedi	Si
Illuminazione	Si
Pista ciclabile	No
Presenza di sosta a margine	no
Stato della pavimentazione	Buono

Viabilità locale che connette la SP 46 con via IV Novembre, descritta di seguito.

12 – via IV Novembre

Tipo di strada	Locale
Funzione attuale	Collegamento
Larghezza carreggiata	7.00 m
Numero corsie	2
Larghezza corsie	3.50 m
Senso di circolazione	Doppio senso
Marciapiedi	No
Illuminazione	No
Pista ciclabile	No
Presenza di sosta a margine	no
Stato della pavimentazione	Discreto

Strada che collega la SP 46 con la località Rettorgole di Caldogno.

13 – via Monte Grappa

Tipo di strada	Locale
Funzione attuale	Collegamento centro Costabissara
Larghezza carreggiata	8.00 m
Numero corsie	2
Larghezza corsie	4.00 m
Senso di circolazione	Doppio senso
Marciapiedi	Si
Illuminazione	Si
Pista ciclabile	Si
Presenza di sosta a margine	no
Stato della pavimentazione	Buono

Strada che collega la SP 46 con il centro urbano di Costabissara, collocato a sud-ovest dell'area di studio.

3.2 INTERSEZIONI

Analogamente a quanto fatto per le aste viarie, è stata effettuata un'adeguata descrizione delle principali intersezioni presenti nell'area di interesse. Le intersezioni analizzate si collocano lungo la SP 46, come evidenziato nell'immagine seguente, la quale riportata il posizionamento delle intersezioni descritte all'interno dell'area oggetto di studio.

Figura 8 – Intersezioni analizzate

L'intersezione 1 è costituita dalla SP 46, dalla SP 349, da via Preazzi e da via Pasubio. Il nodo è di primaria importanza all'interno del territorio vicentino, e presenta una notevole complessità, infatti vi transitano quattro correnti veicolari con origine e destinazione i centri abitati di Vicenza, Thiene, Schio e Caldogno. Tale intersezione costituisce il nodo che sarà riqualificato a cura e spese della ditta proponente per dare compimento alle condizioni

di sostenibilità dell'intervento così come derivato dalle previsioni di Piano degli Interventi per la sostenibilità viabilistica dello stesso.

Attualmente l'intera intersezione è regolata da segnaletica orizzontale e verticale tramite una serie di "dare precedenza" che prediligono i flussi in direzione Schio-Vicenza e Thiene-Vicenza.

Come si può notare dalle panoramiche riportate, sono presenti diverse aiuole di grandi dimensioni che canalizzano i flussi interessati. Tuttavia, l'intersezione, nella sua totalità, appare poco sicura dal momento che è interessata da notevoli flussi che la attraversano a velocità sostenuta.

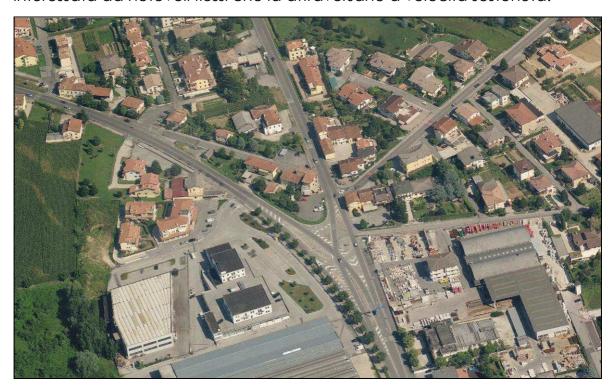


Figura 9 – Intersezione 1 – vista aerea

Figura 10 – Intersezione 1 – panoramica

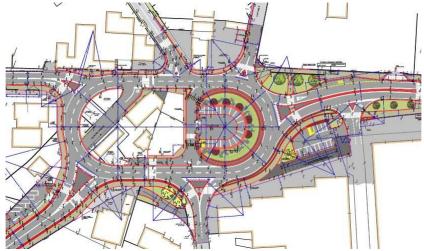


Figura 11 – Intersezione 1 – panoramica

Di seguito è riportato il dettaglio planimetrico della sistemazione dell'intersezione, i cui lavori sono attualmente in corso di svolgimento come da documentazione fotografica allegata.

PLANIMETRIA PROGETTO DI RIQUALIFICAZIONE DEL NODO

FOTO DEI LAVORI IN CORSO

L'intersezione 2 è tra la SP 46, via De Gasperi e la nuova viabilità di lottizzazione. Si tratta di una rotatoria di recente costruzione che regola i flussi che attraversano il nodo in direzione nord-sud e viceversa con i flussi in ingresso/uscita da via De Gasperi. Il quarto ramo della rotatoria conduce alla viabilità di lottizzazione posta a ovest della SP 46, a servizio dei nuovi comparti. La rotatoria è completata da opportuna segnaletica orizzontale e verticale, oltre che adeguata illuminazione, tali da garantire le ottimali condizioni di sicurezza, oltre ai percorsi protetti per pedoni e ciclisti.

Figura 12 – Intersezione **2** – SP 46/via De Gasperi

Figura 13 – Intersezione 2 – SP 46/via De Gasperi

Figura 14 – Intersezione **2** – SP 46/via De Gasperi

L'intersezione **3** è tra la SP 46 e via IV Novembre, si tratta di un incrocio a "T" regolato mediante segnaletica orizzontale e verticale che impone l'obbligo di dare la precedenza ai veicoli che transitano sulla SP 46. L'intersezione è di grandi dimensioni, completata da ampie isole spartitraffico che separano i flussi in uscita verso la strada provinciale.

Figura 15 – Intersezione 3 – SP 46/via IV Novembre

L'intersezione 4, tra la SP 46 e via Monte Grappa, collega la strada provinciale con il centro urbano di Costabissara. Si tratta di una rotatoria che regola i flussi importanti che attraversano il nodo in direzione nord-sud e viceversa con i flussi laterali in ingresso/uscita dal centro urbano di Costabissara (via Monte Grappa). La rotatoria è completata da opportuna segnaletica orizzontale e verticale, oltre che adeguata illuminazione, tali da garantire le ottimali condizioni di sicurezza.

Sull'ultimo tratto di via Monte Grappa è stato ricavato un percorso ciclopedonale.

Figura 16 – Intersezione **4** – SP 46/via Monte Grappa

Figura 17 – Intersezione **4** – SP 46/via Monte Grappa

3.3 TRASPORTO PUBBLICO

Costabissara non possiede una linea di trasporto pubblico locale, tuttavia è interessata dalla linea n.6 del sistema di trasporto pubblico del Comune di Vicenza. La linea n. 6 presenta come inizio del percorso la stazione ferroviaria di Vicenza, e come capolinea la località Motta di Costabissara, situata poco a nord dell'area oggetto di studio.

Nello specifico la linea transita lungo la SP 46 e poi svolta sulla SP 349 e arriva al capolinea su via Battisti (SP 349) al limite del centro abitato di Motta, come si vede dalle immagini seguenti.

Figura 18 – Capolinea di via Battisti

Figura 19 – Capolinea di via Battisti

Nelle vicinanze si possono osservare diverse fermate indicate nell'immagine seguente.

Figura 20 – Fermate dell'autobus urbano di Vicenza n. 6 presenti nelle vicinanze Inoltre si rilevano anche alcune fermate del trasporto pubblico extraurbano che soddisfano i collegamenti tra Vicenza e i centri abitati di Schio, Thiene

e dei paesi limitrofi. La localizzazione delle paline è evidenziata nella figura seguente, nonché nelle foto riportate successivamente.

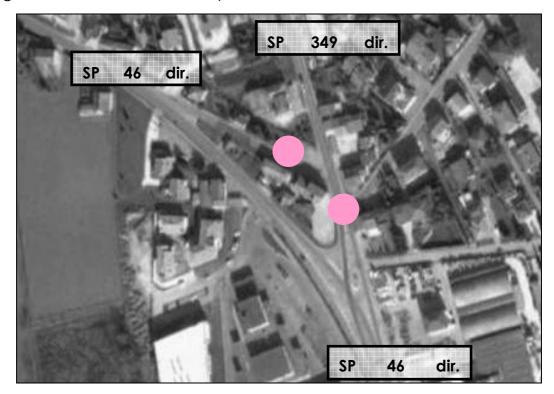


Figura 21 – localizzazione paline TPL

Palina su via Monte Ortigara

Palina sulla SP 349

4. ANALISI DELLA DOMANDA DI TRAFFICO

Per un quadro completo ed esauriente della mobilità, ed al fine di definire in modo attendibile il livello di servizio della viabilità allo stato attuale, sono stati effettuati rilievi di traffico dell'area limitrofa al lotto in esame. A tale scopo ci si è avvalsi di due diverse tipologie di indagini:

- rilevazioni automatiche, eseguita mediante degli apparecchi conta traffico posizionati sugli archi principali della rete con rilievo continuativo sulle 24 h, suddiviso in intervalli di 15 minuti;
- rilevazioni manuali, basate sulla rilevazione diretta eseguita da un operatore umano, il quale non solo ha la capacità di rilevare il veicolo e riconoscerne il tipo, ma anche quella di valutare le manovre dei veicoli ed il comportamento del guidatore in ambito urbano.

4.1 RILEVAZIONI AUTOMATICHE

La prima serie di rilevazioni a cui di fa riferimento sono state effettuate nell'anno 2013, nelle giornate di venerdì e sabato nell'arco delle 24 ore consecutive come richiesto dalla normativa in vigore. I dati vengono riportati, ed esplicitati anche in intervalli di 15 minuti, in allegato alla presente relazione.

Sono state analizzate 4 postazioni bidirezionali di seguito elencate:

- 1. via Rovereto direzione Vicenza
- 2. via Rovereto direzione Schio
- 3. via Battisti direzione Vicenza
- 4. via Battisti direzione Thiene
- 5. via Pasubio direzione Vicenza
- 6. via Pasubio direzione Caldogno
- 7. strada provinciale del Pasubio SP 46 direzione Vicenza

8. strada provinciale del Pasubio SP 46 direzione nord

Per una migliore comprensione dell'indagine svolta si riporta un'immagine con la localizzazione delle sezioni.

Figura 22 – Postazioni automatiche

		VEN	ERDI'	SAB	ATO
		leggeri	pesanti	leggeri	pesanti
Postazione 1	17.00	498	12	407	5
rosiazione i	18.00	502	9	400	2
Postazione 2	17.00	545	26	392	1
rosiazione z	18.00	451	26	340	5
Postazione 3	17.00	430	43	470	3
rosidzione s	18.00	480	17	449	6
Postazione 4	17.00	469	20	319	5
rosidzione 4	18.00	482	13	277	5
Postazione 5	17.00	223	8	198	0
rosidzione 5	18.00	203	2	199	4
Postazione 6	17.00	213	3	202	0
rosidzione o	18.00	246	4	224	0
Postazione 7	17.00	719	47	775	8
rosiuzione /	18.00	788	15	730	6
Postazione 8	17.00	877	35	684	5
Postazione 8	18.00	864	32	605	4

Come è possibile evincere dalla tabella sopra riportata la giornata di venerdì risulta maggiormente caricata rispetto a quella di sabato, inoltre per entrambe le giornate l'ora dalle 17:00 alle 18:00 risulta essere quella più trafficata, costituendo quindi l'ora di punta.

4.2 RILEVAZIONI AUTOMATICHE DI RISCONTRO – ANNO 2017

Al fine di poter verificare la validità dei rilievi e valutazioni precedenti si è proceduto alla verifica dei flussi di traffico, con riferimento alla sezione bidirezionale più significativa, cioè lungo la SP 46.

La verifica è stata fatta per le sezioni 7 e 8 con i seguenti risultati:

- 7. strada provinciale del Pasubio SP 46 direzione Vicenza;
- 8. strada provinciale del Pasubio SP 46 direzione nord.

7 - SP 46 direzione Vicenza **25/01/2013 - 26/01/2013**

7 - SP 46 direzione Vicenza **26/05/2017 - 27/05/2017**

25/01	/2013	26/01/2013		
leggeri	pesanti	leggeri	pesanti	
180	5	180	5	
156	3	126	0	
104	3	99	8	
102	4	66	4	
70	9	55	6	
170	3	92	5	
440	14	181	9	
718	16	388	9	
727	23	457	8	
577	29	445	7	
463	23	346	9	
427	24	383	9	
451	28	370	6	
589	30	373	3	
436	29	403	4	
420	28	394	4	
473	42	423	6	
719	47	775	8	
788	15	730	6	
545	21	416	3	
320	17	281	3	
211	6	274	0	

26/05	5/2017	27/05/2017		
leggeri	pesanti	leggeri	pesanti	
195	4	189	4	
163	3	131	3	
105	2	105	6	
108	3	72	3	
75	7	72	6	
164	4	98	6	
439	14	190	9	
739	15	395	11	
733	24	477	9	
531	28	449	9	
467	23	419	9	
437	27	345	7	
463	30	385	5	
584	30	388	3	
435	32	406	2	
416	31	401	4	
477	45	439	5	
709	48	782	7	
813	21	728	4	
550	21	433	5	
312	17	298	6	
203	7	273	4	

9299	442	7685	133
99	13	188	8
114	10	240	3

9333	<i>455</i>	7928	137
101	11	195	6
114	8	258	4

27/05/2017

8- SP 46 direzione nord **25/01/2013 - 26/01/2013**

8- SP 46 direzione nord **26/05/2017 - 27/05/2017**

26/05/2017

25/01/2013		26/01/2013		
leggeri	pesanti	leggeri	pesanti	
108	4	117	2	
44	2	90	1	
35	2	52	2	
23	4	37	2	
42	8	41	4	
102	12	51	5	
225	17	115	7	
715	16	280	6	
773	17	368	7	
559	19	460	8	
483	18	485	8	
459	16	445	8	
510	14	502	12	
583	20	378	5	
566	17	341	6	
529	18	442	5	
536	21	553	9	
877	35	684	5	
864	32	605	4	
573	11	436	7	
328	9	418	4	
232	4	298	1	
162	6	241	2	
88	4	306	4	
9416	326	7745	124	

26/05	5/2017	27/05/2017		
leggeri	pesanti	leggeri	pesanti	
110	3	132	3	
51	3	98	2	
44	3	63	2	
24	7	51	3	
45	9	51	3 3 4	
107	12	67		
218	15	119	5	
712	13	277	4	
760	14	392	6	
581	16	469	8	
500	18	477	7	
467	13	451	7	
508	19	512	12	
572	20	397	7	
561	21	340	4	
539	18	430	6	
561	20	544	8	
807	35	697	3	
887	30	599	5 7	
599	10	465		
324	8	410	5	
228	6	292	3	
177	4	236	4	
87	5	302	4	
9469	322	7871	122	

Come è possibile osservare dalle tabelle sopra riportate, che mettono a confronto i dati del 2013 con quelli del 2017, i flussi sono rimasti pressoché inalterati. Alla luce delle verifiche effettuate si ritiene quindi affermare che le condizioni di deflusso della viabilità sono rimaste sostanzialmente inalterate, permettendo di ritenere ancora valide le verifiche sullo scenario progettuale. L'unica modifica intervenuta nella viabilità, allo stato attuale, riguarda la realizzazione della rotatoria tra la SP 46 e via De Gasperi, che però non modifica l'andamento dei flussi o le manovre rilevate in quanto si

tratta di nuova regolamentazione dei flussi di una strada laterale, in accordo con le previsioni urbanistiche e di screening ambientale.

4.3 RILEVAZIONI MANUALI

Per un quadro completo ed esauriente della mobilità, ed al fine di definire in modo attendibile il livello di servizio della viabilità allo stato attuale, si è fatto riferimento ai rilievi di traffico dell'area limitrofa al lotto in esame. A tale scopo ci si è avvalsi di rilevazioni manuali, basate sulla rilevazione diretta eseguita da un operatore umano, il quale non solo ha la capacità di rilevare il veicolo e riconoscerne il tipo, ma anche quella di valutare le manovre dei veicoli ed il comportamento del guidatore.

I risultati delle rilevazioni manuali sono stati suddivisi per classe di veicoli e in termini di veicoli equivalenti. I coefficienti utilizzati per omogeneizzare i veicoli sono stati i seguenti:

- c= 1.0 → per i veicoli leggeri;
- c= 2.0 → per i veicoli pesanti.

In seguito ai rilievi eseguiti nelle giornate di venerdì e sabato, nella fascia bioraria dalle 17.00 alle 19.00, individuata come momento della giornata con maggior traffico veicolare, sono state ricostruite le matrici origine/destinazione per ciascuna intersezione oggetto di studio.

Nell'immagine seguente vengono indicate le intersezioni oggetto di rilievo.

Rev 0

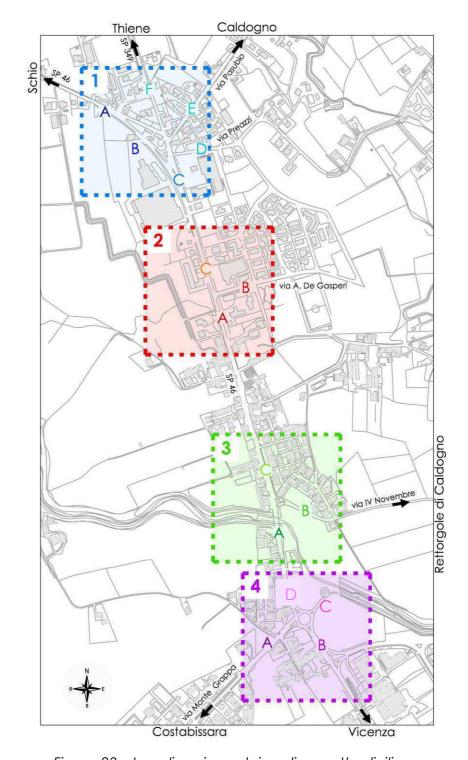
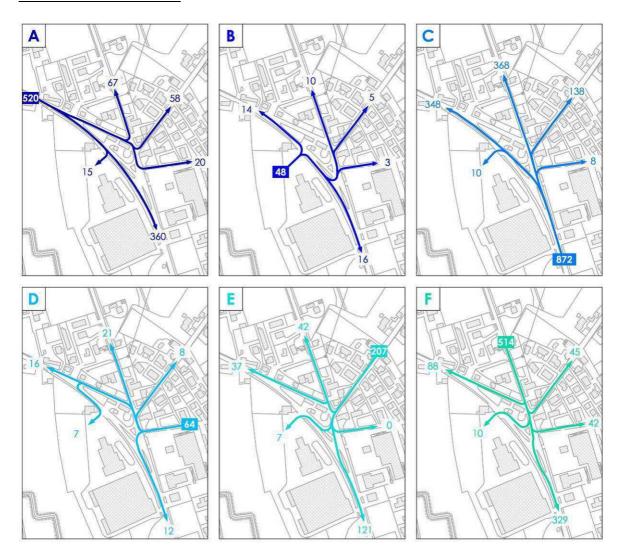


Figura 23 – Localizzazione dei nodi oggetto di rilievo

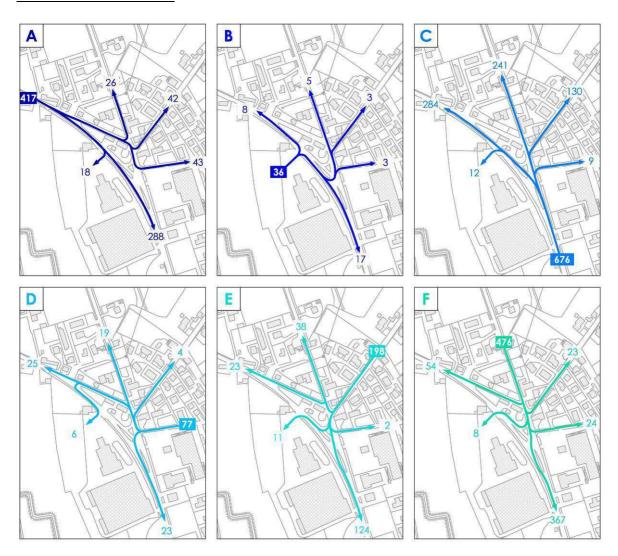
Nelle pagine seguenti si riportano in maniera schematica e sotto forma di matrice Origine/Destinazione i risultati dei rilievi eseguiti sulle intersezioni.

Dai dati di seguito esposti emerge che l'ora di punta è quella dalle 17:00 alle 18:00 sia per la giornata del venerdì che per la giornata del sabato.

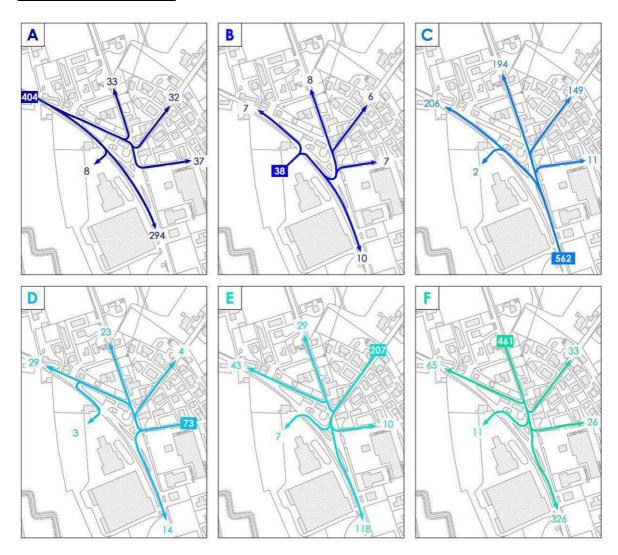
Intersezione "1"


<u>Venerdì 17.00 – 18.00</u>

INTERSEZIONE 1 - VEICOLI EQUIVALENTI VENERDI' 25.01.13 - 17.00÷18.00							
O/D	Α	В	С	D	E	F	totali
Α	0	14	359	37	67	45	522
В	13	0	10	8	5	9	45
С	410	7	0	5	92	388	902
D	23	7	6	0	8	19	63
Е	73	14	96	8	0	48	239
F	78	8	346	37	47	0	516
totali	597	50	817	95	219	509	2287

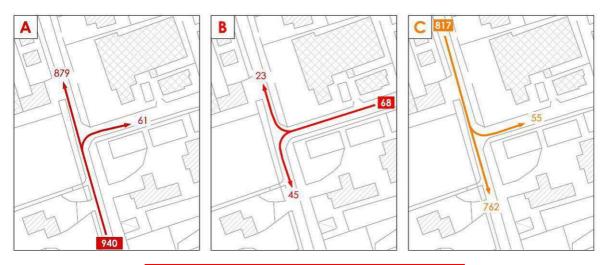

<u>Venerdì 18.00 – 19.00</u>

INTERSEZIONE 1 - VEICOLI EQUIVALENTI VENERDI' 25.01.13 - 18.00÷19.00							
O/D	Α	В	С	D	E	F	totali
A	0	15	360	20	58	67	520
В	14	0	16	3	5	10	48
С	348	10	0	8	138	368	872
D	16	7	12	0	8	21	64
Е	37	7	121	0	0	42	207
F	88	10	329	42	45	0	514
totali	503	49	838	73	254	508	2225

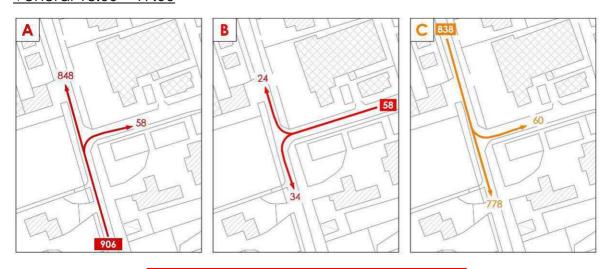

<u>Sabato 17.00 – 18.00</u>

		INTERSEZI	ONE 1 - VE	ICOLI EQ	UIVALENTI		
		SABA	ATO 26.01.1	13 - 17.00÷	-18.00		
O/D	Α	В	С	D	E	F	totali
Α	0	18	288	43	42	26	417
В	8	0	17	3	3	5	36
С	284	12	0	9	130	241	676
D	25	6	23	0	4	19	77
E	23	11	124	2	0	38	198
F	54	8	367	24	23	0	476
totali	394	55	819	81	202	329	1880

<u>Sabato 18.00 – 19.00</u>

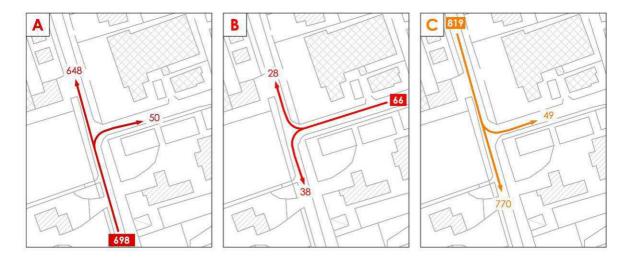


INTERSEZIONE 1 - VEICOLI EQUIVALENTI SABATO 26.01.13 - 18.00÷19.00							
O/D	Α	В	С	D	Е	F	totali
A	0	8	294	37	32	33	404
В	7	0	10	7	6	8	38
С	206	2	0	11	149	194	562
D	29	3	14	0	4	23	73
E	43	7	118	10	0	29	207
F	65	11	326	26	33	0	461
totali	350	31	762	91	224	287	1745

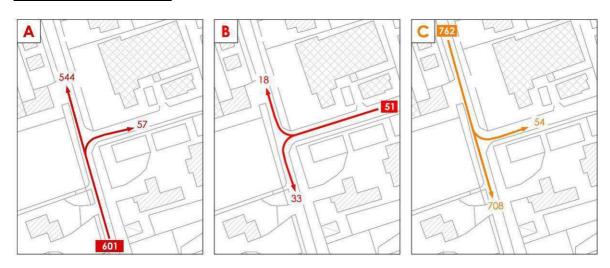

Intersezione "2"

<u>Venerdì 17.00 – 18.00</u>

INTERSEZIONE 2 - VEICOLI EQUIVALENTI							
VENERDI' 25.01.13 - 17.00÷18.00							
O/D	Α	В	С	totali			
Α	0	61	879	940			
В	45	0	23	68			
С	762	55	0	817			
totali	807	116	902	1825			


<u>Venerdì 18.00 – 19.00</u>

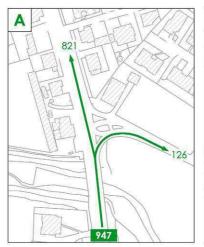
	INTERSEZIONE 2 - VEICOLI EQUIVALENTI VENERDI' 25.01.13 - 18.00÷19.00									
O/D	O/D A B C totali									
A	0	58	848	906						
В	34	0	24	58						
С	778	60	0	838						
totali	812	118	872	1802						



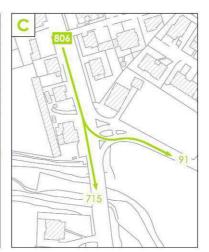
<u>Sabato 17.00 – 18.00</u>

INTE	INTERSEZIONE 2 - VEICOLI EQUIVALENTI										
SABATO 26.01.13 - 17.00÷18.00											
O/D	O/D A B C totali										
Α	0	50	648	698							
В	38	0	28	66							
С	770	49	0	819							
totali	808	99	676	1583							

<u>Sabato 18.00 – 19.00</u>

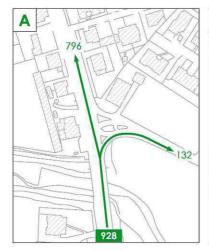


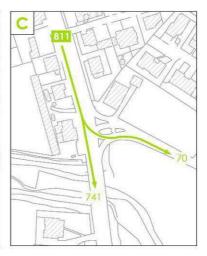
INTE	INTERSEZIONE 2 - VEICOLI EQUIVALENTI SABATO 26.01.13 - 18.00÷19.00									
O/D	A B C totali									
Α	0	57	544	601						
В	33	0	18	51						
С	708	54	0	762						
totali	741	111	562	1414						



Intersezione "3"

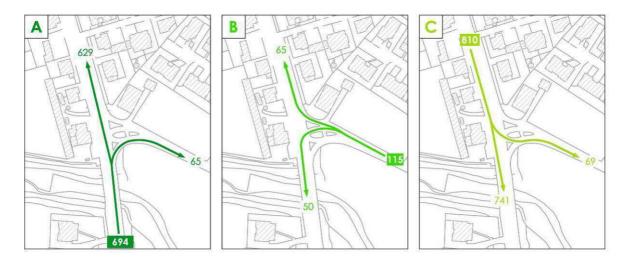
<u>Venerdì 17.00 – 18.00</u>



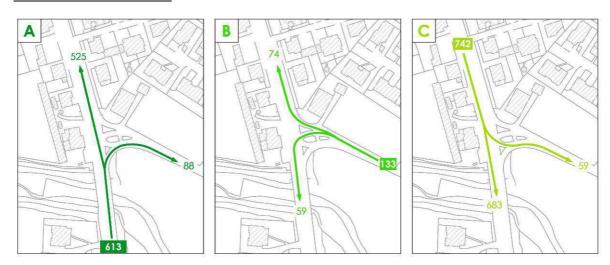


INTERSEZIONE 3 - VEICOLI EQUIVALENTI										
VENERDI' 25.01.13 - 17.00÷18.00										
O/D	Α	В	С	totali						
Α	0	126	821	947						
В	98	0	120	218						
С	715	91	0	806						
totali	813	217	941	1971						

<u>Venerdì 18.00 – 19.00</u>



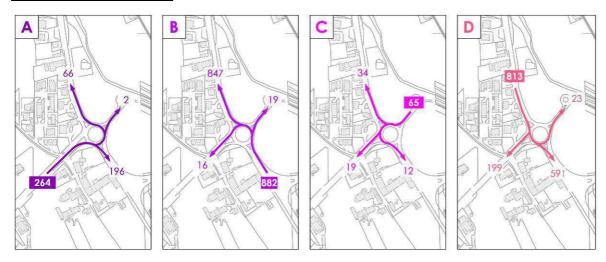
INTERSEZIONE 3 - VEICOLI EQUIVALENTI VENERDI' 25.01.13 - 18.00÷19.00									
O/D	Α	В	С	totali					
Α	0	132	796	928					
В	77	0	110	187					
С	741	70	0	811					
totali	818	202	906	1926					



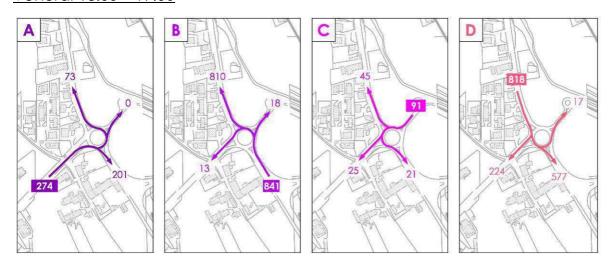
<u>Sabato 17.00 – 18.00</u>

INTERSEZIONE 3 - VEICOLI EQUIVALENTI SABATO 26.01.13 - 17.00÷18.00										
O/D A B C totali										
Α	0	65	629	694						
В	50	0	65	115						
С	741	69	0	810						
totali	791	134	694	1619						

<u>Sabato 18.00 – 19.00</u>

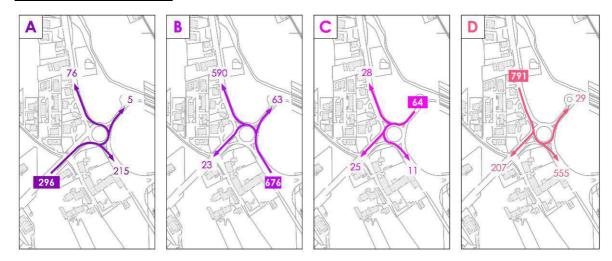


INTERSEZIONE 3 - VEICOLI EQUIVALENTI SABATO 26.01.13 - 18.00÷19.00										
O/D	D A B C totali									
Α	0	88	525	613						
В	59	0	74	133						
С	683	59	0	742						
totali	742	147	599	1488						

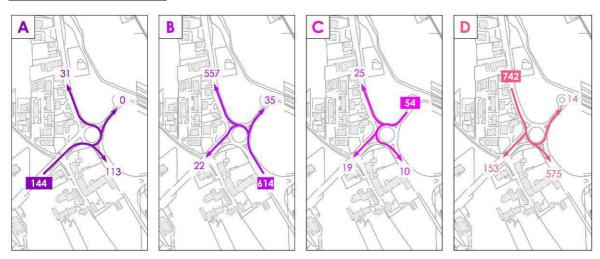

Intersezione "4"

<u>Venerdì 17.00 - 18.00</u>

	INTERSEZIONE 4 - VEICOLI EQUIVALENTI										
VENERDI' 25.01.13 - 17.00÷18.00											
O/D	Α	В	С	D	totali						
Α	0	196	2	66	264						
В	16	0	19	847	882						
С	19	12	0	34	65						
D	199	591	23	0	813						
totali	234	799	44	947	2024						


<u>Venerdì 18.00 – 19.00</u>

	INTERSEZIONE 4 - VEICOLI EQUIVALENTI VENERDI' 25.01.13 - 18.00÷19.00										
O/D	Α	В	С	D	totali						
Α	0	201	0	73	274						
В	13	0	18	810	841						
С	25	21	0	45	91						
D	224	577	17	0	818						
totali	262	799	35	928	2024						



<u>Sabato 17.00 – 18.00</u>

	INTERSEZIONE 4 - VEICOLI EQUIVALENTI										
SABATO 26.01.13 - 17.00÷18.00											
O/D	Α	В	С	D	totali						
Α	0	215	5	76	296						
В	23	23 0 63 590			676						
С	25	11	0	28	64						
D	207	555	29	0	791						
totali	255	781	97	694	1827						

<u>Sabato 18.00 – 19.00</u>

INTERSEZIONE 4 - VEICOLI EQUIVALENTI SABATO 26.01.13 - 18.00÷19.00										
O/D	Α	В	С	D	totali					
Α	0	113	0	31	144					
В	22	0	35	557	614					
С	19	10	0	25	54					
D	153	575	14	0	742					
totali	194	698	49	613	1554					

4.4 CALCOLO DEL FATTORE DELL'ORA DI PUNTA (PHF)

Si definisce fattore dell'ora di punta, PHF, il rapporto (adimensionale):

$$PHF = \frac{V}{4 \cdot V_{15}}$$

dove:

è il volume orario, definito come il numero di veicoli che attraversa una data sezione di una corsia o di una strada nell'intervallo orario di punta;

V₁₅ è il volume osservato durante i quindici minuti di punta, definito come il numero di veicoli che attraversa una data sezione di una corsia o di una strada nell'intervallo dei quindici minuti di punta.

Di seguito si propone il PHF per le postazioni di traffico eseguite nell'ambito dello studio di impatto viabilistico per la richiesta di una grande struttura di vendita.

POSTAZIONE 1 SP 46 direzione Vicenza

	25/01/2013													
	Legg	geri	Pesc	anti	Equiva	Equivalenti F		Leggeri		Pesanti		Equival	enti	PHF
17:00	92	498	2	12	96	522		95	407	4	5	103	417	
17:15	146		5		156		0.84	104		0		104		0,97
17:30	138		4		146		0,04	107		0		107		0,77
17:45	122		1		124			101		1		103		
18:00	136	502	3	9	142	520		110	400	1	2	112	404	
18:15	125		0		125		0,88	92		0		92		0,90
18:30	135		6		147		0,00	101		1		103		0,70
18:45	106		0		106			97		0		97		

POSTAZIONE 2 SP 46 direzione Schio

Legge	eri	Pesa	nti	Equivo	alenti	PHF	Legg	eri	Pesanti		Equivo	ılenti	PHF
130	545	5	26	140	597		74	392	0	1	74	394	
145		10		165		0.00	115		0		115		0,86
144		3		150		0,70	106		1		108		0,00
126		8		142			97		0		97		
141	451	7	26	155	503		90	340	5	5	100	350	
114		4		122		0.01	80		0		80		0,88
99		9		117		0,61	96		0		96		0,00
97		6		109			74		0		74		
	130 145 144 126 141 114 99	145 144 126 141 451 114 99	130 545 5 145 10 144 3 126 8 141 451 7 114 4 99 9	130 545 5 26 145 10 144 3 126 8 141 451 7 26 114 4 99 9	130 545 5 26 140 145 10 165 144 3 150 126 8 142 141 451 7 26 155 114 4 122 99 9 117	130 545 5 26 140 597 145 10 165 144 3 150 126 8 142 141 451 7 26 155 503 114 4 122 99 9 117	130 545 5 26 140 597 145 10 165 144 3 150 126 8 142 0,90 141 451 7 26 155 503 114 4 122 0,81 99 9 9 117 0,81	130 545 5 26 140 597 74 145 10 165 0,90 115 144 3 150 106 126 8 142 97 141 451 7 26 155 503 90 114 4 122 0,81 80 99 9 117 0,81 96	130 545 5 26 140 597 74 392 145 10 165 0,90 115 116 115 126 115 126 126 142 97 141 451 7 26 155 503 90 340 114 4 122 0,81 80 96 96	130 545 5 26 140 597 74 392 0 145 10 165 0,90 115 0 144 3 150 106 1 126 8 142 97 0 141 451 7 26 155 503 90 340 5 114 4 122 0,81 80 0 0 99 9 117 0,81 96 0 0	130 545 5 26 140 597 74 392 0 1 145 10 165 0,90 115 0 0 1 144 3 150 106 1	130 545 5 26 140 597 74 392 0 1 74 145 10 165 0,90 115 0 115 144 3 150 106 1 108 126 8 142 97 0 97 141 451 7 26 155 503 90 340 5 5 100 114 4 122 0,81 80 0 80 99 9 117 0,81 96 0 96	130 545 5 26 140 597 74 392 0 1 74 394 145 10 165 0,90 115 0 115 115 115 115 108 115 108 <td< td=""></td<>

Rev 0

POSTAZIONE 3 SP 349 direzione Vicenza

[
	Legg	eri	Pesar	nti	Equivo	ılenti	PHF	Legg	geri	Pesanti		Equiva	lenti	PHF
17:00	81	430	13	43	107	516		122	470	2	3	126	476	
17:15	109		11		131		0,86	132		0		132		0,90
17:30	114		7		128		0,00	127		0		127		0,70
17:45	126		12		150			89		1		91		
18:00	108	480	4	17	116	514		126	449	3	6	132	461	
18:15	124		6		136		0,93	105		2		109		0,87
18:30	130		4		138		0,73	104		0		104		0,67
18:45	118		3		124			114		1		116		

POSTAZIONE 4 SP 349 direzione Thiene

ſ														
	Legg	eri	Pesa	nti	Equivo	alenti	PHF	Legg	geri	Pesanti		Equivo	alenti	PHF
17:00	111	469	6	20	123	509		58	319	3	5	64	329	
17:15	123		8		139		0,92	97		1		99		0,83
17:30	124		2		128		0,72	92		1		94		0,03
17:45	111		4		119			72		0		72		
18:00	152	482	6	13	164	508		77	277	2	5	81	287	
18:15	112		1		114		0,77	66		1		68		0,89
18:30	126		5		136		0,77	61		2		65		0,07
18:45	92		1		94			73		0		73		

POSTAZIONE 5 SP 41 direzione Vicenza

	Legg	geri	Pesar	nti	Equivo	alenti	PHF	Leg	geri	Pesan	ti	Equiv	alenti	PHF
17:00	48	223	2	8	52	239		41	198	0	0	41	198	
17:15	51		3		57		0,81	64		0		64		0,77
17:30	74		0		74		0,01	50		0		50		0,77
17:45	50		3		56			43		0		43		
18:00	51	203	0	2	51	207		50	199	3	4	56	207	
18:15	48		1		50		0,92	47		0		47		0,85
18:30	54		1		56		0,72	59		1		61		0,03
18:45	50		0		50			43		0		43		

POSTAZIONE 6 SP 41 direzione Caldogno

	Legg	eri	Pesan	ti	Equiva	lenti	PHF	Legg	jeri	Pesanti		Equiva	lenti	PHF
17:00	62	213	2	3	66	219		41	202	0	0	41	202	
1 <i>7</i> :15	46		0		46		0,83	55		0		55		0,92
17:30	60		0		60		0,00	52		0		52		0,72
17:45	45		1		47			54		0		54		
18:00	58	246	1	4	60	254		63	224	0	0	63	224	
18:15	55		1		57		0,92	58		0		58		0,89
18:30	67		1		69		0,72	44		0		44		0,07
18:45	66		1		68			59		0		59		

POSTAZIONE 7 SP 46 direzione Vicenza

	Legg	eri	Pesai	nti	Equivo	alenti	PHF	Legge	eri	Pesanti		Equiva	lenti	PHF
17:00	129	719	16	47	161	813		190	775	5	8	200	791	
1 <i>7</i> :15	204		11		226		0,86	182		1		184		0,91
17:30	171		9		189		0,00	217		0		217		0,71
17:45	215		11		237			186		2		190		
18:00	191	788	5	15	201	818		191	730	2	6	195	742	
18:15	223		5		233		0,88	171		2		175		0,95
18:30	203		3		209		0,00	189		1		191		0,73
18:45	171		2		175			179		1		181		

POSTAZIONE 8 SP 46 direzione nord

	Legg	jeri	Pesa	nti	Equivo	alenti	PHF	Legge	eri	Pesanti		Equivo	ılenti	PHF
17:00	218	877	10	35	238	947		114	684	1	5	116	694	
1 <i>7</i> :15	213		11		235		0,98	177		1		179		0,83
17:30	224		4		232		0,70	205		2		209		0,03
17:45	222		10		242			188		1		190		
18:00	261	864	12	32	285	928		164	605	2	4	168	613	
18:15	220		4		228		0,81	155		1		157		0,91
18:30	196		10		216		0,61	149		1		151		0,71
18:45	187		6		199			137		0		137		

MEDIA PESATA Zona in esame

	Legg	geri	Pesai	nti	Equiva	ılenti	PHF	Legg	geri	Pesan	ti	Equiva	ılenti	PHF
17:00	871	3974	56	194	983	4362		735	3447	15	27	765	3501	
17:15	1037		59		1155		0.94	926		3		932		0,91
17:30	1049		29		1107		0,74	956		4		964		0,71
17:45	1017		50		1117			830		5		840		
18:00	1098	4016	38	118	1174	4252		871	3224	18	32	907	3288	
18:15	1021		22		1065		0,91	774		6		786		0,91
18:30	1010		39		1088		0,71	803		6		815		0,71
18:45	887		19		925			776		2		780		

Dalla media pesata di cui sopra e dalle analisi condotte si può notare come l'ora di punta per l'area oggetto di studio coincida con il venerdì sera dalle ore 17.00 alle ore 18.00. Si nota inoltre che il PHF è pari a 0.94 per tale giorno e ora; tale valore dimostra una distribuzione <u>omogenea</u> dei volumi di traffico (V_{15}) all'interno dell'ora di punta (V).

4.5 INDAGINE CORDONALE O/D

Nelle immagini riportate nelle pagine seguenti e negli elaborati grafici allegati alla presente relazione vengono indicate le principali risultanze evidenziate dall'indagine cordonale O/D effettuata con riferimento dell'ora di punta coincidente con l'ora di punta serale dalle 17.00 alle 18.00.

Le zone di riferimento considerate sono:

Zona A: SP 46 via Rovereto

Zona B: Via Monte Grappa

Zona C: SP 46 sud

Zona D: Via IV Novembre

Zona E: SP 41 via Pasubio

Zona F: SP 349 via Battisti

Zona X: Zona interna

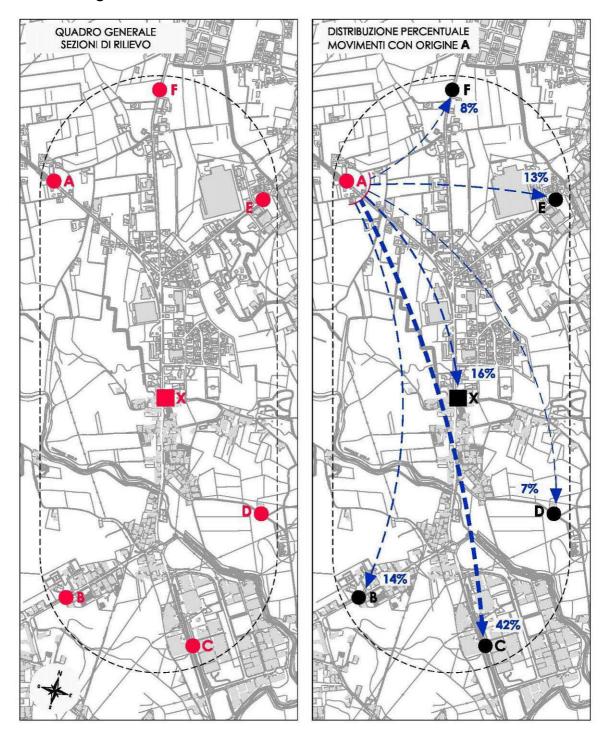
L'indagine cordonale, per una ragione di praticità e anche per la necessità di dover assegnare la maggiore quantità possibile di veicoli nell'ambito di studio, è stata eseguita con il "metodo della targhe". Il metodo consiste nella lettura delle ultime tre cifre e due lettere delle targhe ai vari varchi di ingresso e uscita dal cordone. Riportati i dati in un tabulato, e lavorati attraverso opportuno software per l'assegnazione dei percorsi, è stato possibile giungere alla stima dei movimenti all'interno del cordone.

In tal modo, rispetto alla classica analisi tramite il metodo "delle interviste" (certamente più utile per indagini di livello comunale o sovracomunale) è stato possibile assegnare la quasi totalità degli spostamenti nell'arco delle ore del rilevamento.

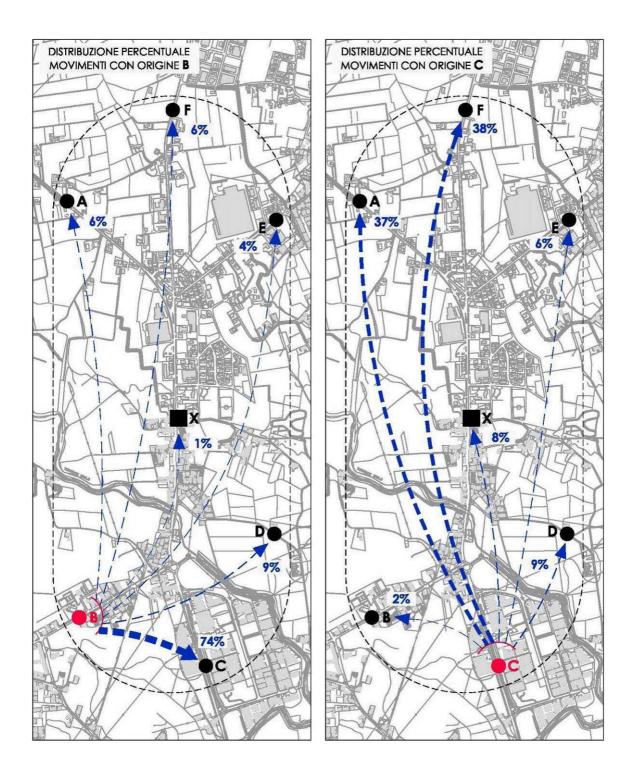
Di seguito si propone la matrice totale e le immagini relative per la giornata di venerdì:

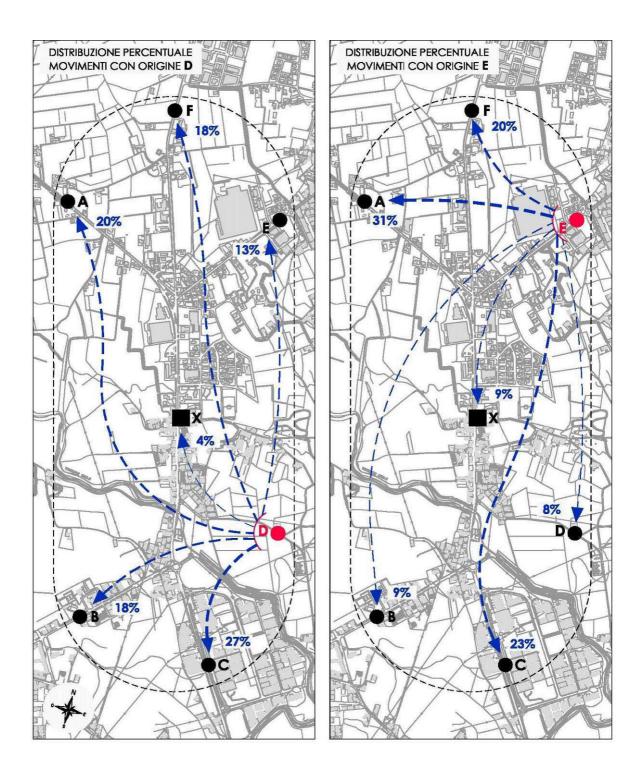
	ora	di punt	a 17.00	÷18.00 g	giornato	di ver	erdì	
O/D	Α	В	С	D	E	F	Χ	TOT.
Α	0	72	218	38	67	45	82	522
В	15	0	196	24	10	17	2	264
С	331	16	0	82	54	331	68	882
D	44	40	58	0	28	40	8	218
E	73	22	56	18	0	48	22	239
F	78	65	230	35	47	0	61	516
Х	56	19	41	20	13	28	0	177
TOT.	597	234	799	217	219	509	243	2818

Figura 24 – Matrice O/D indagine cordonale venerdì

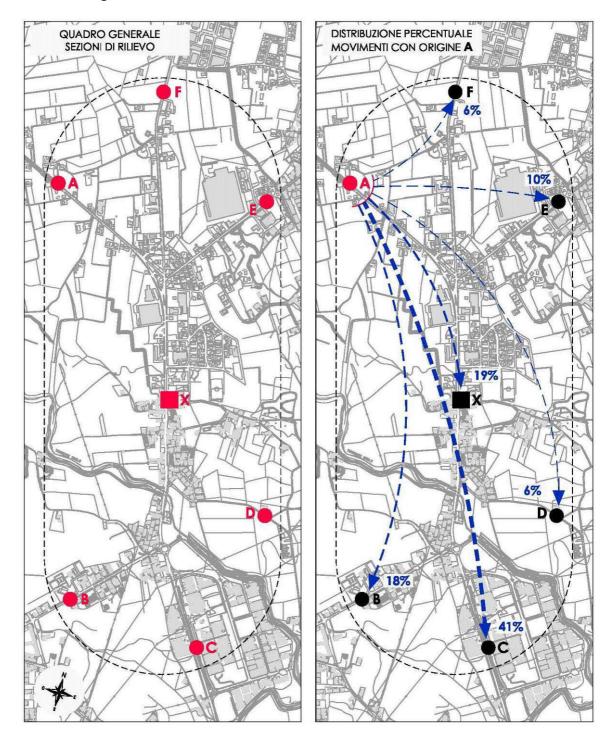

Di seguito si riportano i risultati dell'indagine per la giornata di sabato.

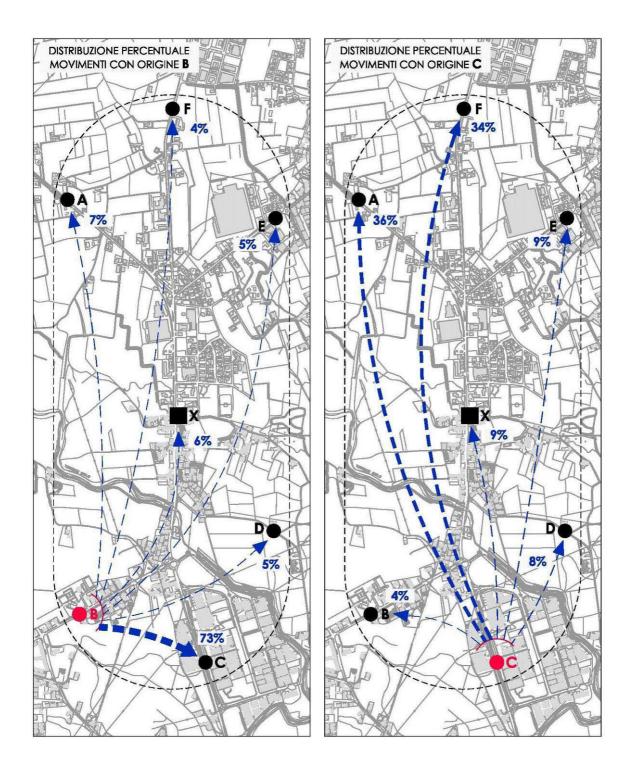
	ora	di punt	a 17.00	÷18.00 (giornato	a di sab	ato	
O/D	Α	В	С	D	E	F	Χ	TOT.
Α	0	74	172	24	42	26	79	417
В	24	0	215	14	14	11	18	296
С	242	23	0	51	64	233	63	676
D	24	12	38	0	5	9	27	115
E	23	22	65	18	0	38	32	198
F	54	68	267	12	23	0	52	476
X	27	56	24	15	54	12	0	188
TOT.	394	255	781	134	202	329	271	2366

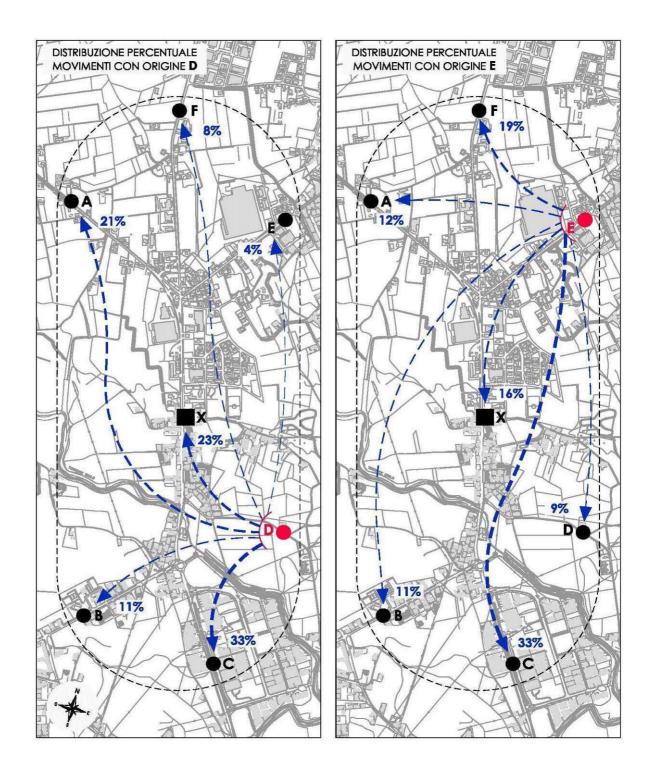

Figura 25 – Matrice O/D indagine cordonale sabato

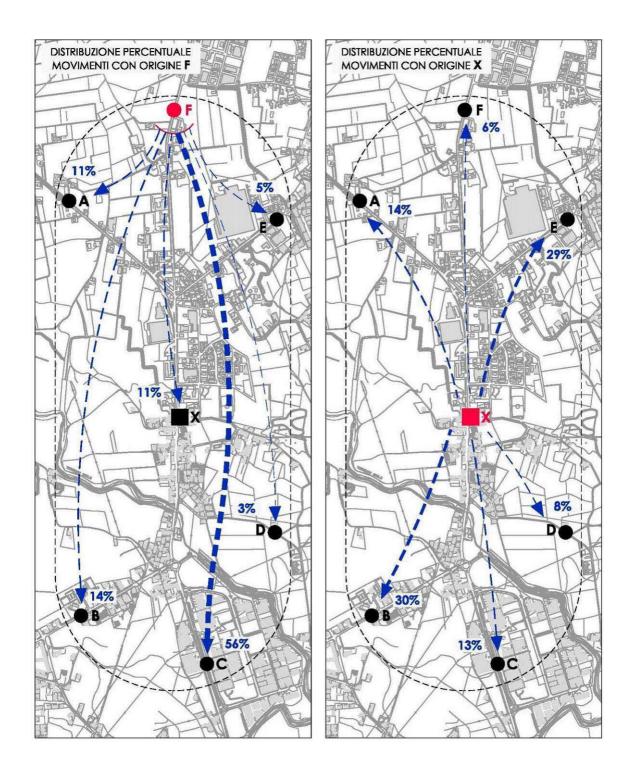

4.5.1 Indagine cordonale O/D venerdì








4.5.2 Indagine cordonale O/D sabato



5. INTERVENTO DI PROGETTO – 7.000 MQ SV

Il progetto prevede la realizzazione di una struttura per l'attivazione di una Grande Struttura di Vendita caratterizzata da una superficie di 7.000 mq. La struttura commerciale si trova a nord del lotto, mentre nella porzione a sud trovano collocazione i parcheggi.

Nella zona a sud del lotto in esame si sviluppa la rimanente urbanizzazione ricollegata alla viabilità provinciale attraverso la viabilità interna dei piani in fase di ultimazione che conduce alla nuova rotatoria in corrispondenza di Via De Gasperi, che costituisce l'accesso sud del lotto. Le provenienze da nord potranno invece usufruire della nuova viabilità realizzata in fregio al lotto e ricollegata al nuovo sistema a rotatoria prevista all'intersezione del Botteghino.

Figura 26 – Planimetria di progetto

6. COMPATIBILITA' INFRASTRUTTURALE

Gli scenari viabilistici esposti nei capitoli successivi trovano conferma anche nelle previsioni urbanistiche dei piani comunali e provinciali, come meglio spiegato nei paragrafi successivi

6.1 PIANO TERRITORIALE DI COORDINAMENTO PROVINCIALE DI VICENZA

Il PTCP della Provincia di Vicenza individua il tracciato della Variante alla SP 46 e il collegamento della stessa con la SP 46 nell'intersezione tra la SP 46 e la SP 349 a Motta di Costabissara.

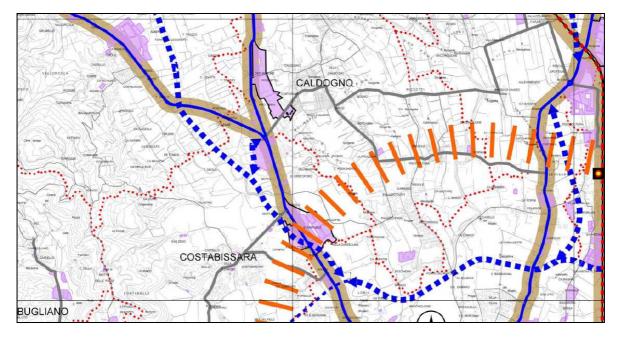


Figura 27 – Estratto del PTCP della Provincia di Vicenza

Lo stralcio A della bretella è quello che si stacca da viale del Sole in zona Pomari, davanti alla nuova Camera di Commercio, e si collega poi all'esistente SP 46 a Costabissara. Il tracciato è lungo 5,3 km, ad una corsia per ogni senso di marcia ma già predisposta per il raddoppio. Due gli svincoli, uno in ingresso su viale del Sole, con viadotto sopraelevato per l'immissione diretta di chi proviene dall'autostrada, e l'altro in uscita a raso. Tre i sottopassi, agli incroci con le strade esistenti: la SP 36 di Gambugliano, la strada Comunale Ambrosini e via Pian delle Maddalene.

6.2 PIANO DI ASSETTO DEL TERRITORIO DEL COMUNE DI COSTABISSARA

Le azioni sulla viabilità di lungo periodo prevedono la realizzazione della nuova SP 46 che consentirà di bypassare l'attuale tracciato liberando l'abitato di Motta dal traffico di attraversamento.

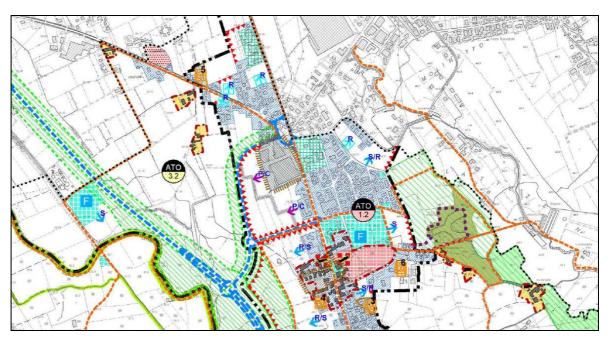


Figura 28 – Estratto del PAT del Comune di Costabissara

Parallelamente il PAT prevede il completamento del sistema delle circonvallazioni interne che consentiranno di potenziare i collegamenti con i comuni contermini sulle direttrici nord-sud senza l'attraversamento del centro di Costabissara consentendone, così, la completa riqualificazione.

6.3 PIANO DEGLI INTERVENTI DEL COMUNE DI COSTABISSARA

Anche nel PI vengono riconfermate le previsioni urbanistiche che prevedono la realizzazione della variante alla SP 46. Inoltre è prevista una viabilità di importanza secondaria che collega l'attuale rete infrastrutturale comunale con la nuova viabilità d progetto.

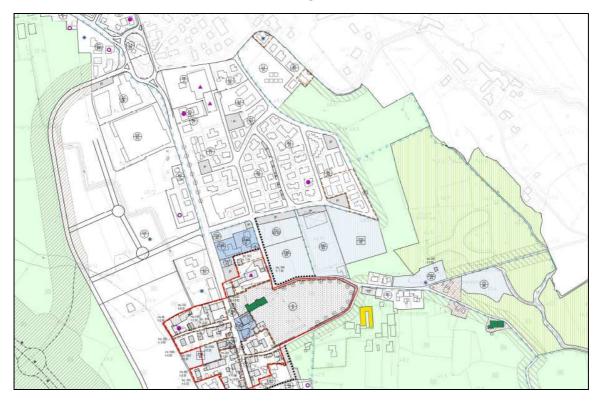


Figura 29 – Estratto del PI del Comune di Costabissara

Rev_0

7. SCENARIO DI PROGETTO

Come evidenziato in premessa lo scenario infrastrutturale progettuale prevede la co-presenza delle nuove rotatorie lungo la SP 46, entrambe realizzate a cura e spese della ditta proponente, al fine di dare attuazione alle condizioni di sostenibilità così come valutate positivamente in sede di screening ambientale.

Lo scenario progettuale legato alla attivazione di 7.000 mq di superficie di vendita prevede quindi:

- attivazione di 7.000 mq di superficie di vendita e relativi flussi indotti
- rotatoria tra la SP 46 e via De Gasperi e viabilità di lottizzazione di collegamento **già realizzata**
- rotatoria del Botteghino in corso di realizzazione

Gli elaborati grafici esplicano chiaramente quanto sopra ipotizzato.



Figura 30 – Scenario infrastrutturale di progetto

Nell'ambito dello scenario infrastrutturale di progetto sono stati caricati sia i flussi indotti dall'ambito commerciale, che dall'ambito direzionale, artigianale e residenziale adiacenti all'intervento principale

Di seguito è riportato uno schema di massima della riqualificazione dell'intersezione del Botteghino.

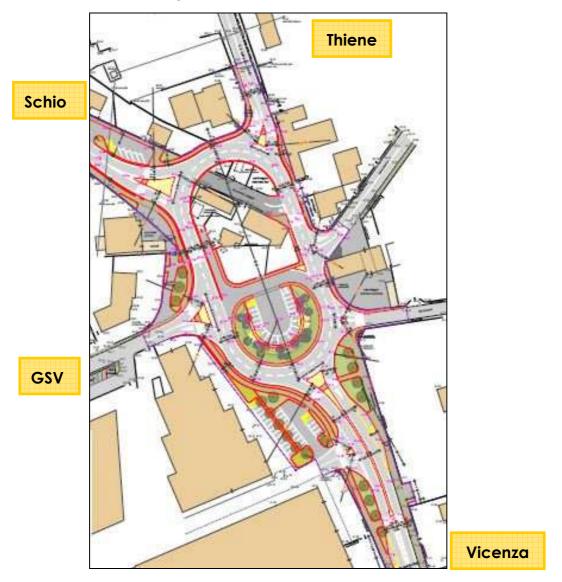


Figura 31 – Progetto di riqualificazione dell'intersezione

8. FLUSSI INDOTTI E FLUSSI FUTURI – SCENARIO AUTORIZZATO 6.000 MQ E CALCOLO INDOTTO

Ad oggi risulta già autorizzato lo scenario di progetto basato sull'attivazione della Grande Struttura di Vendita caratterizzata da 6.000 mq di superficie di vendita con una dotazione di 400 posti auto, e sulla realizzazione di alcuni edifici a destinazione artigianale e residenziale nell'ambito della lottizzazione adiacente è stato già autorizzato.

In riferimento al calcolo de flussi indotti, come precedentemente effettuato, e come previsto dalla DGR 569/2005 il calcolo del flusso indotto, è stato legato alla potenzialità dei parcheggi, in ragione del numero dei posti auto richiesti dalla normativa. Il numero totale di posti auto legati alla Sv di 6000 mq era pari 400 unità circa. Tale numero di posti soddisfaceva alla condizione di parcheggio effettivo così come definita dalla Regione Veneto (Circolare della Regione Veneto n. 4 del 5 settembre 2005, 3.Capo V, punto 3.1.2). Il totale dei posti auto è dedicato alla struttura di vendita, con una durata della sosta media di 1,5 ore. Dai dati esposti si sono ricavati ricavano i flussi indotti, riassunti nella seguente tabella:

TEORICI	Posti auto totali [458]		
	Durata media della sosta [ore]	1,5	
INDOTII	Veicoli indotti in ingresso	400/1,5 = 267	534
=	Veicoli indotti in uscita	400/1,5 = 267	[totale veicoli indotti]

Calcolo flussi indotti 6.000 mq vendita / 400 posti auto

Ai flussi indotti per la struttura commerciale sono poi stati aggiunti quelli derivanti dalle altre destinazioni d'uso previste nel comparto.

Di seguito si riporta una tabella riepilogativa dei flussi indotti totali autorizzati per i 6.000 mq, per le giornate di venerdì e di sabato:

FLUSSI INDOTTI	SABATO		VENERDI'	
1 2000111120111	Ingresso	Uscita	Ingresso	Uscita
Commerciale	267	267	200	200
Artigianale	0	0	0	50
Residenza	50	0	66	0
Totale	317	267	266	250
Totale	584		51	6

9. FLUSSI INDOTTI E FLUSSI FUTURI – SCENARIO DI PROGETTO 7.000 MQ E CALCOLO INDOTTO

9.1 Flussi indotti

Analogamente a quanto definito in sede di analisi dello scenario autorizzato di 6.000 mq, anche per lo scenario di riferimento caratterizzato da 7.000 mq di superficie di vendita e sulla realizzazione di alcuni edifici a destinazione artigianale e residenziale nell'ambito della lottizzazione adiacente vengono definiti i flussi indotti per l'ora di punta serale del venerdì e del sabato.

Lo scenario di riferimento si compone dei flussi attuali e dei flussi indotti conseguentemente alla realizzazione dell'ipotesi progettuale. Se ne deduce che i flussi indotti verranno sommati ai flussi attuali ridistribuiti secondo le percentuali di provenienza.

9.1.1 Flussi indotti dall'area commerciale

Analogamente a quanto già valutato dagli uffici competenti ed autorizzato per la superficie di vendita di 6.000 mq, il calcolo del flusso indotto, viene legato alla potenzialità dei parcheggi, in ragione del numero dei posti auto previsti dalla normativa. Il numero totale di posti auto a disposizione è pari 458 unità circa. Tale numero di posti soddisfa la condizione di parcheggio effettivo così come definita dalla Regione Veneto (Circolare della Regione Veneto n. 4 del 5 settembre 2005, 3.Capo V, punto 3.1.2). Il totale dei posti auto è dedicato alla struttura di vendita, con una durata della sosta media di 1,5 ore. Dai dati esposti si ricavano i flussi indotti, riassunti nella seguente tabella:

TEORICI	Posti auto totali		
	Durata media della sosta [ore]	1,5	
NDOTTI	Veicoli indotti in ingresso	458/1,5 = 305	610
=	Veicoli indotti in uscita	458/1,5 = 305	[totale veicoli indotti]

Calcolo flussi indotti 7.000 mg vendita / 458 posti auto

Va sottolineato che è possibile ipotizzare che i flussi indotti appena calcolati non siano completamente aggiuntivi alla rete ma, vista l'elevata degli urbanizzazione abitati circostanti е l'elevato traffico attraversamento della SP 46, è possibile ritenere che buona parte dell'utenza sia già compresa nei flussi attuali. Infatti si potrà parlare anche di una "cattura" dei veicoli di passaggio, facendo diminuire in effetti il traffico indotto calcolato, lasciando spazio ad un'eventuale ipotesi ancora più cautelativa in merito alla quantità di veicoli indotti e alle relative verifiche di capacità. Le considerazioni appena esposte e i dati relativi i flussi indotti da strutture simili inducono ad ipotizzare che parte dell'utenza della nuova struttura sia già compresa nei flussi attuali, soprattutto per quanto riguarda la giornata di venerdì. I dati relativi strutture simili confermano che gli indotti del venerdì corrispondo a circa il 25% in meno rispetto a quelli del sabato. Pertanto a scopo cautelativo, per la giornata di sabato si considerano quali indotti il 100% dei flussi teorici calcolati, mentre per la giornata di venerdì si considerano il 75% dei flussi teorici calcolati.

	Posti auto totali		
BATO	Durata media della sosta [ore]		
SA	Veicoli indotti in ingresso	458/1,5 = 305	610
	Veicoli indotti in uscita	458/1,5 = 305	[totale veicoli indotti]

,	Posti auto totali		
ERD	Durata media della sosta [ore]	1,5	
VEN	Veicoli indotti in ingresso	(458/1,5) - 25% = 229	458
	Veicoli indotti in uscita	(458/1,5) - 25% = 229	[totale veicoli indotti]

9.1.2 Flussi indotti dall'area artigianale

L'attività artigianale viene ipotizzata su un totale di sei lotti di terreno, di diversa dimensione. Al momento non è noto l'utilizzo specifico dei diversi edifici e la tipologia di attività artigianale che si insedierà, per questo risulta difficile stimare in maniera precisa il traffico indotto, tuttavia si ritiene ragionevole stimare un indotto complessivo pari a 50 veicoli in uscita dal comparto e nessuno in ingresso per la giornata di venerdì, mentre si ipotizza che nessun veicolo sia generato nella giornata di sabato.

9.1.3 Flussi indotti dall'area residenziale

Gli edifici residenziali sono distribuiti in maniera omogenea nella parte meridionale della lottizzazione, con tipologia edilizia di case a schiera e villette per un totale di 66 abitazioni. Al fine di quantificare i veicoli indotti si ipotizza che nell'ora di punta serale sia generato un veicolo in ingresso per abitazione, in tal modo si ha un totale di 66 veicoli in ingresso all'area e nessun veicolo in uscita per la giornata di venerali, mentre si ipotizza un minore flusso generato per la giornata di sabato, giorno non lavorativo, per cui si stima una riduzione pari al 25% rispetto al venerali, da cui si ricavano 50 veicoli che si stimano essere tutti in ingresso al comparto residenziale.

9.1.4 Flussi indotti complessivi

Il totale dei flussi indotti risulta essere diverso per la giornata di venerdì e per la giornata di sabato. Di seguito si riporta una tabella riepilogativa.

FLUSSI INDOTTI	SAB	ATO	VENERDI'	
12000111120111	Ingresso	Uscita	Ingresso	Uscita
Commerciale	305	305	229	229
Artigianale	0	0	0	50
Residenza	50	0	66	0
Totale	355	305	295	279
Toldle	660		574	

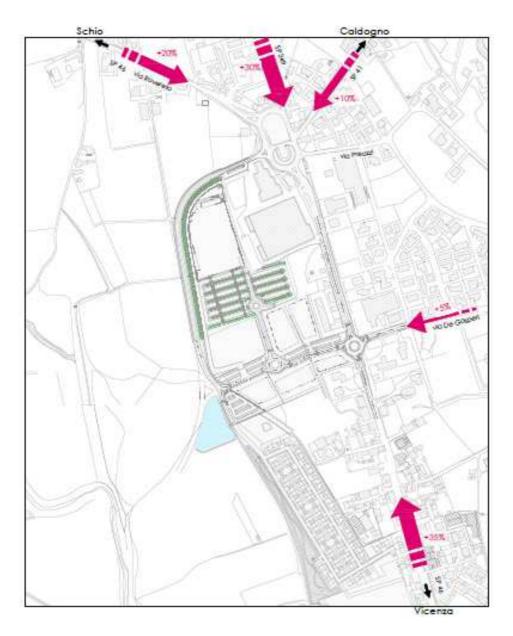
9.1.5 Distribuzione dei flussi indotti

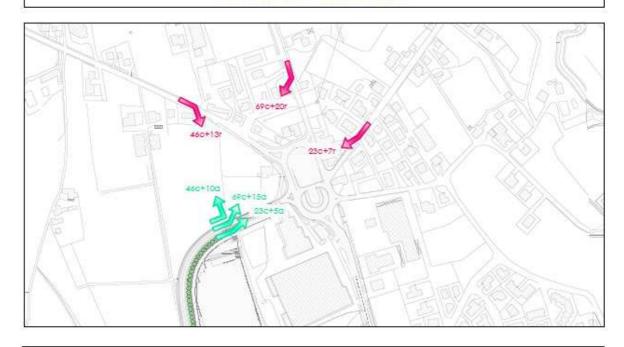
Lo sviluppo urbanistico previsto con la realizzazione di una Grande Struttura di Vendita genera un naturale incremento dei flussi attualmente presenti sulla rete viaria. Infatti la localizzazione di strutture di vendita è generalmente origine di spostamenti nel bacino territoriale afferente all'intervento stesso. Ai fini delle verifiche analitiche, gli indotti saranno ripartiti sui rami, che convergono alle intersezioni rilevate, sulla base di considerazioni legate al bacino di utenza che tale tipo di intervento potrà coprire in ragione della localizzazione e, soprattutto, in ragione dell'attuale distribuzione dei flussi di traffico circolanti sulla rete.

Alla luce dei rilievi di traffico effettuati si è quindi proceduto a ipotizzare lo schema delle provenienze dei flussi indotti.

Arrotondando le percentuali e considerando anche la possibilità di altre provenienze non oggetto dei rilievi si perviene alla distribuzione dei flussi indotti nell'immagine seguente, che prevede:

- 20% diretti/provenienti dalla SP 46 Schio;
- 30% diretti/provenienti dalla SP 349 Thiene;
- 10% diretti/provenienti da via Pasubio Caldogno;
- 5% diretti/provenienti da via De Gasperi residenze di Motta;
- 35 % diretti/provenienti dalla SP 46 Vicenza.




Figura 32 – Distribuzione dei flussi indotti

9.1.6 Flussi indotti venerdì

Di seguito si riportano i flussi indotti in ingresso e in uscita per le intersezioni poste nelle vicinanze della GSV. In verde sono esposti i veicoli in uscita dalla GSV e in magenta quelli in ingresso.

INTERSEZIONE 1 - FLUSSI INDOTTI

INTERSEZIONE 2 - FLUSSI INDOTTI

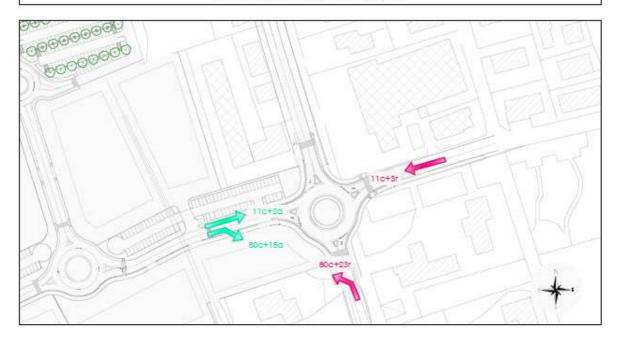
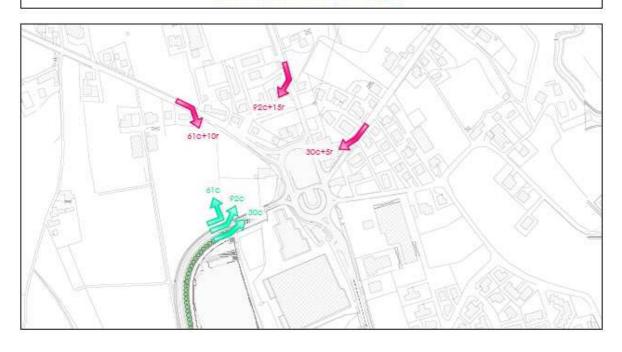



Figura 33 – Distribuzione dei flussi indotti - venerdì

9.1.7 Flussi indotti sabato

INTERSEZIONE 1 - FLUSSI INDOTTI

INTERSEZIONE 2 - FLUSSI INDOTTI

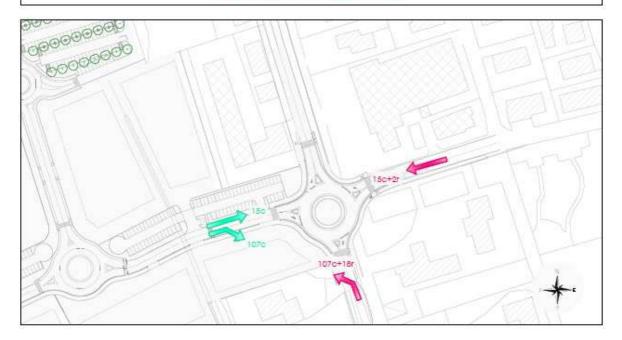


Figura 34 – Distribuzione dei flussi indotti - sabato

9.2 FLUSSI FUTURI

Scopo del presente studio è quello di confrontare la situazione del traffico attuale con quella che si registrerà nel futuro, in relazione allo scenario di intervento identificato. La struttura viabilistica in esame viene, quindi, "caricata" del traffico attualmente presente nell'area e di quello attratto/generato dal nuovo insediamento in progetto. In questo modo, è possibile stimare i carichi veicolari, sia sugli assi principali, che nelle intersezioni di maggior importanza, e valutarne gli effetti.

Ne consegue che i flussi futuri sono dati dalla somma dei flussi attuali e dei flussi indotti dall'attivazione della GSV.

Per il calcolo dei flussi futuri viene preso in esame il flusso massimo del venerdì corrispondente all'intervallo orario 17.00 ÷ 18.00, che risulta essere l'ora di punta, come emerso dai rilievi manuali esposti precedentemente, ai quali si sommano i flussi di traffico indotti secondo le distribuzione esposte nel paragrafo precedente, pervenendo alla stima dei flussi futuri di traffico futuri. Si procede anche con il calcolo dei flussi futuri per la giornata di sabato, infatti, anche se risulta meno caricata rispetto alla giornata di venerdì presenta un maggior numero di flussi indotti. Anche per la giornata di sabato l'ora di punta è quella che va dalle 17.00 alle 18.00.

Nelle pagine seguenti vengono riportati i flussi futuri orari e le manovre future delle intersezioni in prossimità dell'area oggetto di studio.

9.2.1 Flussi futuri venerdì

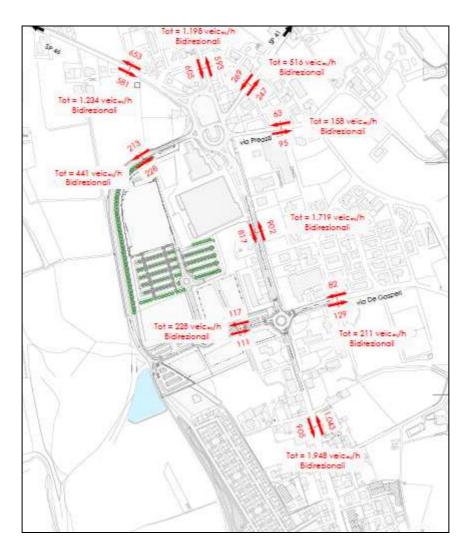
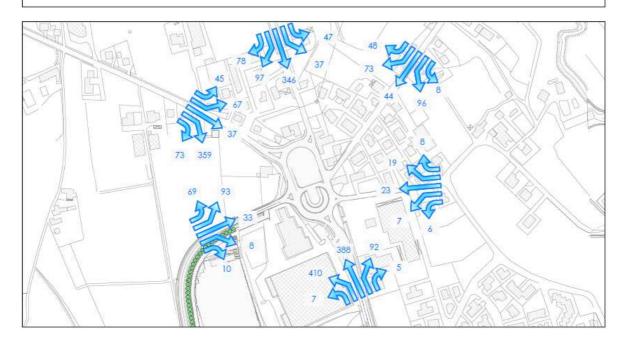



Figura 35 – Flussi futuri – ora di punta del venerdì

INTERSEZIONE 1 - FLUSSI FUTURI

INTERSEZIONE 2 - FLUSSI FUTURI

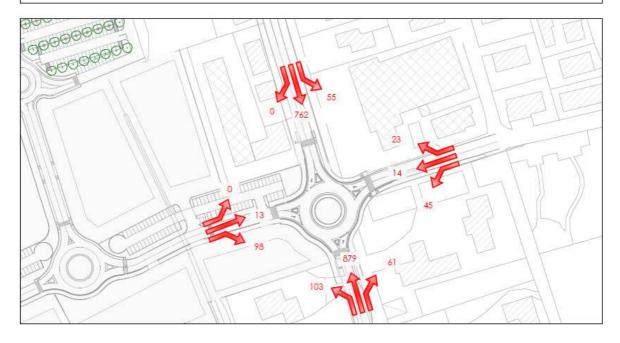


Figura 36 – Manovre future – ora di punta del venerdì

9.2.2 Flussi futuri sabato

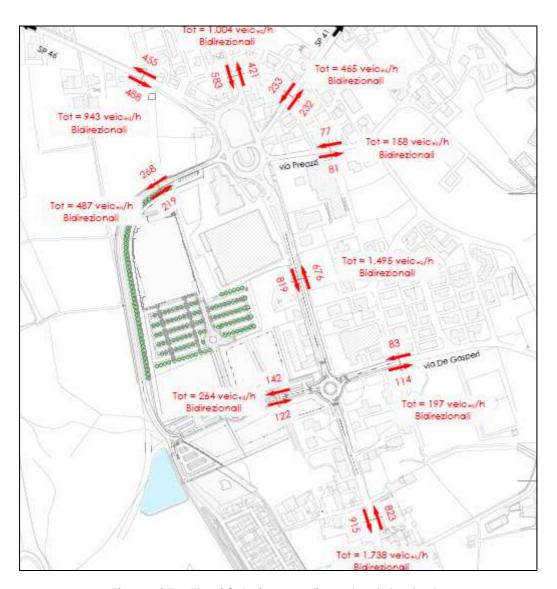
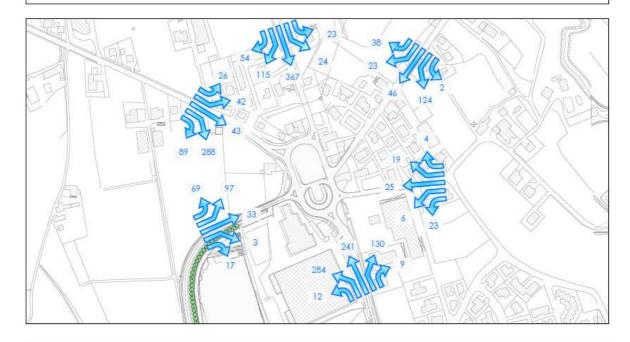



Figura 37 – Flussi futuri – ora di punta del sabato

INTERSEZIONE 1 - FLUSSI FUTURI

INTERSEZIONE 2 - FLUSSI FUTURI

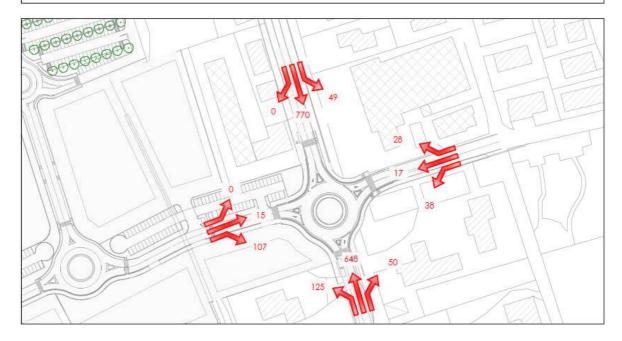


Figura 38 – Manovre future – ora di punta del sabato

10. VERIFICHE ANALITICHE - DEFINIZIONI

Al fine di eseguire una stima attenta e puntale del grado di funzionalità degli archi stradali, sia allo stato attuale che futuro, è necessario introdurre il concetto di livello di servizio (LOS) delle infrastrutture stradali.

10.1 DEFINIZIONI

L'entità del traffico può calcolarsi attraverso differenti parametri. L'analisi e le considerazioni sui flussi indotti dall'insediamento necessitano, perciò, di riferimenti teorici che vengono forniti e chiariti di seguito.

I principali indici ai quali si farà riferimento sono i seguenti:

- Volume di traffico orario o flusso orario Q (veic/h): rappresenta il numero di veicoli che transitano, in un'ora, attraverso una data sezione stradale;
- Flusso di servizio Q_s (veic/h per corsia): secondo l'H.C.M. (Highway Capacity Manual, 1985) è definito dal massimo valore del flusso orario dei veicoli che attraversano, su una corsia, una sezione stradale sotto prefissate condizioni dell'arteria e di traffico:
- Traffico medio giornaliero annuo T_{mga}: è il rapporto fra il numero di veicoli che transitano in una data sezione (in genere, riferito ai due sensi di marcia) e 365 giorni. Tale dato si riporta ad un intervallo di tempo molto ampio e non tiene conto delle oscillazioni del traffico, nei vari periodi dell'anno, per cui è più significativo il valore del traffico medio giornaliero T_{mg} definito come rapporto tra il numero di veicoli che, in dato numero di giorni opportunamente scelti nell'arco dell'anno, transitano attraverso la data sezione ed il numero di giorni in cui si è eseguito il rilevamento;

- Densità di traffico D: è il numero di veicoli che, per corsia, si trovano nello stesso istante in un definito tronco stradale; la densità misura il numero di veicoli per miglio o per chilometro e per corsia;
- Densità critica: è la densità di circolazione allorquando la portata raggiunge la capacità possibile di una strada (vedi definizioni successive);
- Portata (volume di circolazione o di flusso): numero di veicoli che transitano per una sezione della strada (o corsia, in un senso od in entrambi i sensi) nell'unità di tempo; equivale al prodotto della densità per la velocità media di deflusso. La portata rappresenta una situazione di fatto, che tende ad uguagliare la domanda di movimento dei veicoli, la quale a sua volta tende ad uguagliare quello che è possibile definire il desiderio di mobilità dell'utenza;
- Capacità: conviene definire capacità, úiq specificatamente, capacità possibile di una strada, il massimo numero di veicoli che vi possono transitare in condizioni prevalenti di strada e di traffico. La capacità rappresenta la risposta dell'infrastruttura alla domanda prevalente di movimento; sarà soddisfacente dal punto di vista tecnico quando si mantiene superiore alla portata, dal punto di vista tecnico ed economico insieme quando uguaglia la portata;

Livello di servizio (LOS): si definisce come la misura della prestazione della strada nello smaltire il traffico; si tratta, perciò, di un indice più significativo della semplice conoscenza del flusso massimo o capacità. I livelli di servizio, indicati con le lettere da A ad F, dovrebbero coprire tutto il campo delle condizioni di circolazione; il livello A rappresenta le condizioni operative migliori e quello F le peggiori. Il livello di servizio è una misura qualitativa dell'effetto di un certo numero di fattori che comprendono la velocità ed il

tempo di percorrenza, le interruzioni del traffico, la libertà di manovra, la sicurezza, la comodità della guida ed i costi di esercizio. La scelta dei singoli livelli è stata definita in base a particolari valori di alcuni di questi fattori. Da rilevare che la progettazione stradale avviene facendo riferimento ai livelli servizio B e C, e non al livello A che comporterebbe "diseconomicità" della struttura, essendo sfruttata pienamente per pochi periodi nella sua vita utile.

10.2 LIVELLI DI SERVIZIO DEGLI ASSI STRADALI

Si riportano di seguito i principi generali della procedura di calcolo della capacità dei Livelli di Servizio (LOS).

I modelli HCM 1985 e 2000 nascono da rilievi e considerazioni tecniche inerenti prevalentemente la circolazione veicolare negli Stati Uniti. Questo dato di partenza implica che, come indicato negli stessi manuali HCM, è necessario adattare le modalità di analisi di questi modelli al caso italiano, attraverso le specifiche fornite dalla normativa italiana.

In relazione alle specifiche condizioni della rete stradale del nord Italia, delle peculiarità dell'utenza veicolare (caratteristiche personali e del parco veicolare), nonché del carico veicolare che tipicamente interessa le infrastrutture presenti nel territorio esaminato si propone:

- per le strade a carreggiate separate: di recepire in toto le metodologie dell'HCM 1985;
- 2. per le infrastrutture a carreggiata unica: di applicare i seguenti adattamenti:
 - HCM 1985:

Rev 0

- utilizzare un valore della Capacità pari a 3200 veicoli / ora (anziché 2800 veicoli /ora)
- 2. utilizzare come parametro di riferimento per il passaggio da un LOS al successivo dei rapporti Flussi / Capacità del

20% superiori rispetto a quelli indicati nella metodologia statunitense:

• HCM 2000:

 valutare il LOS sempre in funzione del solo parametro PTSF con valori di riferimento per il passaggio da un LdS al successivo pari al: 40% (tra LdS A e LdS B), 60% (tra LdS B e LdS C), 77% (tra LdS C e LdS D), 88% (tra LdS D e LdS E).

In ragione di quanto sopra indicato, si determinano in corrispondenza di condizioni di deflusso ideali, le seguenti portate di servizio:

CARREGGIATE SEPARATE

	HCM 1985		
LOS	Flusso / Capacità	Flusso (veicoli/ora) per corsia	
Α	0,35	~ 700	
В	0,54	~ 1.100	
С	0,77	~ 1.550	
D	0,93	~ 1.850	
E	> 0,93	FLUSSI PER CORSIA DI MARCIA	

CARREGGIATA UNICA (ed una corsia per senso di marcia)

	нс	M 1985	HCM 2000		
LOS	Flusso / Capacità	Flusso (veicoli/ora)	PTSF (%)	Flusso (veicoli/ora)	
Α	0,18	~ 575	40	~ 575	
В	0,32	~ 1.042	60	~ 1.042	
С	0,52	~ 1.650	77	~ 1.650	
D	0,77	~ 2.450	88	~ 2.450	
Е	> 0,77	FLUSSI BIDIREZIONALI	> 88	FLUSSI BIDIREZIONALI	

10.3 CRITERI DI VERIFICA DELLE ROTATORIE

La capacità delle rotatorie di smaltire i flussi di traffico previsti sono state negli anni definite in funzione delle regole di precedenza e dell'evoluzione delle configurazioni geometriche, anche basate su indagini e misure sperimentali.

Sono oggi disponibili nella letteratura specializzata varie formulazioni di capacità elaborate soprattutto in Francia, Germania, Svizzera e Inghilterra. Tutte le formule elaborate tengono sostanzialmente conto di alcuni indicatori fondamentali, esprimendo la capacità in funzione dei parametri geometrici e di traffico.

10.3.1 Analisi della capacità

Nell'analisi del funzionamento delle infrastrutture stradali, per capacità si intende generalmente come la massima portata che ha buona probabilità di non essere superata nelle prevalenti condizioni di esercizio. Questo concetto si "particolarizza" nelle intersezioni a rotatoria e porta alla introduzioni di tre grandezze, a secondo che si consideri l'entrata di un singolo ramo o la rotatoria nel suo insieme:

- capacità d'entrata di un singolo ramo;
- capacità semplice di una rotatoria;
- capacità complessiva o totale di una rotatoria.

La valutazione della capacità delle entrate richiede una stima dei flussi di traffico di ogni ramo d'ingresso e la loro variazione temporale. In una rotatoria, in un dato periodo, c'è la possibilità che la capacità di una o più entrate sia superata (grado di saturazione χ >1), con conseguenti code durante i periodi di punta e decadimento della qualità della circolazione.

Capacità d'entrata di un singolo ramo di una rotatoria

Si definisce Ce capacità potenziale d'entrata di un ramo di una rotatoria il massimo valore del flusso d'entrata che determina la presenza permanente di veicoli in attesa di immettersi:

Ce =
$$max Qe (v/h)$$

Nelle ordinarie operazioni di analisi di capacità sono considerati periodi di conteggio dei flussi di traffico dell'ordine di 15 minuti; il calcolo può essere eseguito su base oraria. Il valore del flusso massimo d'entrata è funzione del

flusso circolante Qc che percorre l'anello e, quindi, della distribuzione dei flussi in entrata nei rami della rotatoria (Figura 39):

$$Ce = f(Qc)$$
 (v/h)

In riferimento ad alcune formulazioni lineari per la valutazione della capacità d'entrata, è prevista l'influenza del valore del flusso uscente Qu nel medesimo ramo, attraverso la definizione di flusso di disturbo Qd alla capacità d'entrata:

$$Qd = f(Qc,Qu)$$
 (v/h)
 $Ce = f(Qd)$ (v/h)

Non è possibile quindi calcolare la capacità di un ramo se non è nota l'intera matrice O/D della rotatoria, dato che Qc si ricava da essa. Si definisce grado di saturazione d'entrata il rapporto tra il flusso entrante e la relativa capacità d'entrata:

$$x = \frac{Q_e}{C_e}$$

Dall'analisi dell'andamento dei tempi di attesa in funzione del grado di saturazione, è possibile stabilire un valore, pari a circa 0.85, oltre il quale si registra un netto decadimento della qualità di circolazione ed un corrispettivo aumento esponenziale dei tempi di attesa. Stabilito quindi che il grado di saturazione di una corsia d'ingresso, per un funzionamento soddisfacente durante il periodo di analisi non deve essere maggiore di 0.8, si definisce la capacità effettiva d'entrata:

$$Ce = 0.8 Ce (v/h)$$

Un ulteriore parametro utile alla comprensione del fenomeno di saturazione è la *riserva di capacità d'entrata*, definita come la differenza tra la capacità d'entrata di un ramo e il relativo flusso entrante:

$$Ce = Ce - Qe \quad (v/h)$$

Esprimendo l'andamento dei tempi di attesa in funzione di quest'ultimo parametro si ricava che, ad una riserva di capacità di circa 150 (v/h),

corrisponde il limite di qualità della prestazione (limite LdS C-D). Fatte queste considerazioni, è possibile fornire una analoga definizione di capacità pratica d'entrata:

$$\triangle Ce = Ce - 150$$
 (v/h)

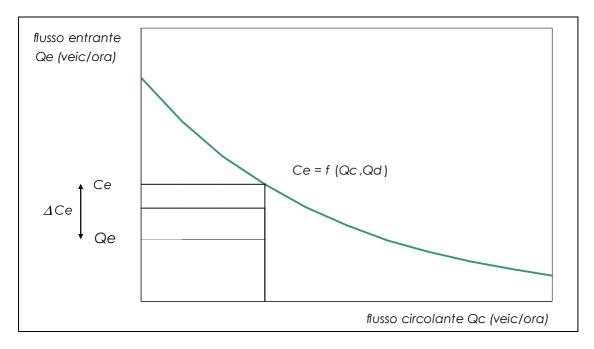


Figura 39 – relazione flusso circolante/capacità d'entrata

Capacità semplice

La capacità semplice Ce, S di una rotatoria è la somma dei flussi di traffico entranti da ogni ramo allorché una delle entrate risulta in condizioni di saturazione.

Capacità totale

La capacità totale Ce,T di una rotatoria è la somma dei flussi di traffico entranti da ogni ramo, allorché tutte le entrate risultano in condizioni di saturazione. La capacità complessiva rappresenta una misura sintetica dell'attitudine limite della rotatoria a smaltire il traffico quando ad ognuno dei bracci sono presenti code. La capacità delle rotatorie a smaltire i flussi di traffico previsti sono state negli anni definite in funzione delle regole di precedenza e dell'evoluzione delle configurazione geometriche anche basate su indagini e misure sperimentali.

Flussi di traffico entrante, circolante, uscente

Dato un ramo di una rotatoria si possono definire i seguenti flussi di traffico (Figura 40 Figura 39):

- Qe = flusso entrante, numero di veicoli che transitano nella sezione d'entrata.
- Qc = flusso circolante, numero di veicoli che transitano nella sezione dell'anello a sinistra dell'entrata.
- Qu = flusso uscente, numero di veicoli che transitano nella sezione di uscita.

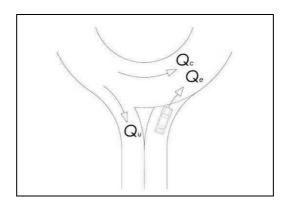


Figura 40 – parametri di traffico relativi ad un ramo

I flussi veicolari sono espressi in veicoli per ora (v/h). Quando è richiesto dal metodo specifico, i flussi dei veicoli diversi dalle autovetture vengono omogeneizzati in veicoli equivalenti per ora (v.eq/h). I coefficienti di equivalenza f_e sono riportati in Figura 41.

tipo di veicolo	f _e
autovettura	1.0
comm. leggeri	1.5
pesanti	2.0
motociclo	0.5
ciclo	0.5

Figura 41 – fattori di equivalenza HCM

Matrice Origine - Destinazione

Si consideri una rotatoria a 4 rami affluenti (i = 1, 2,3,4), si assegna il vettore delle portate in entrata Q = [Qe,i] e la matrice delle percentuali di traffico

tra i rami [$\rho_{i,j}$] per (i, j = 1,2,3,4), il cui generico elemento (i,j) fornisce la frazione del flusso entrante da i che esce in j (*Figura 42*).

Matrice O/D (%)	1	2	3	4	Tot E
1	$ ho_{11}$	$ ho_{12}$	$ ho_{13}$	$ ho_{14}$	1
2	ρ_{21}	$ ho_{22}$	$ ho_{23}$	$ ho_{24}$	1
3	$ ho_{31}$	$ ho_{32}$	$ ho_{33}$	$ ho_{34}$	1
4	ρ_{41}	ρ_{42}	ρ_{43}	ρ_{44}	1
Tot U	1	1	1	1	

Figura 42 – matrice O/D percentuale

Il vettore dei flussi entranti è (Figura 44):

$$Q = [Q_{e,i}] = [Q_{e,1}, Q_{e,2}, Q_{e,3}, Q_{e,4}]$$

Noti Q = $[Q_{e,i}]$ e $[\rho_{i,j}]$ si ricava la matrice di distribuzione O/D M, il cui generico elemento (i,j) rappresenta il flusso in ingresso dal braccio i che esce al braccio j (*Figura 43*).

Matrice O/D	1	2	3	4	Tot E
1	Q 11	Q ₁₂	Q ₁₃	Q ₁₄	Q _{e,1}
2	Q 21	Q 22	Q ₂₃	Q ₂₄	Q _{e,2}
3	Q 31	Q 32	Q 33	Q 34	Q _{e,3}
4	Q 41	Q 42	Q 43	Q 44	Q _{e,4}
Tot U	Q_{III}	$Q_{1/2}$	Q_{II3}	Q_{II4}	

Figura 43 – matrice O/D

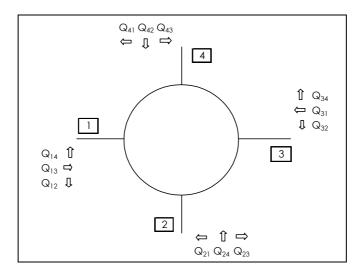


Figura 44 – assegnazione dei flussi secondo la matrice O/D

In virtù della conservazione dei flussi all'anello, si ricavano i flussi circolanti in prossimità delle entrate di ciascun ramo iesimo Qc,i e i flussi uscenti da ciascun ramo iesimo Qu,i (Figura 45 e Figura 46).

	Flussi circolanti	Flussi uscenti
Ramo 1	$Q_{c1} = Q_{42} + Q_{43} + Q_{32}$	$Q_{01} = Q_{21} + Q_{31} + Q_{41}$
Ramo 2	$Q_{c2} = Q_{13} + Q_{14} + Q_{43}$	$Q_{02} = Q_{12} + Q_{32} + Q_{42}$
Ramo 3	$Q_{c3} = Q_{24} + Q_{21} + Q_{14}$	$Q_{U3} = Q_{13} + Q_{23} + Q_{43}$
Ramo 4	$Q_{c4} = Q_{31} + Q_{32} + Q_{21}$	$Q_{04} = Q_{14} + Q_{24} + Q_{34}$

Figura 45 – flussi circolanti e uscenti

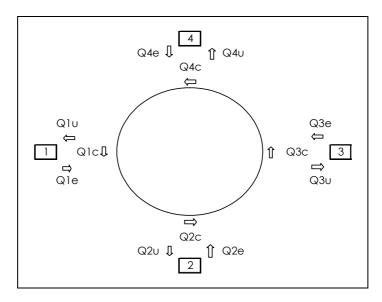


Figura 46 – distribuzione dei flussi di traffico nella rotatoria

10.3.2 I modelli per la verifica di capacità delle intersezioni a rotatoria

Il modello di calcolo della capacità teorica di una rotatoria a tre/quattro rami è il risultato di un approfondimento condotto sulle formulazioni di alcuni studi di ricerca francesi, svizzeri e tedeschi, che hanno compiuto accurate analisi nella determinazione della capacità di smaltimento dei flussi veicolari delle rotatorie.

L'attuale metodo francese di stima della capacità di una entrata in rotatoria (SETRA) ha alla base le indagini effettuate a partire dalla seconda metà degli anni ottanta dai Cete di Nantes, di Metz e di Rouenne.

L'altro metodo di calcolo della capacità è riferito al metodo CETUR (sperimentato anch'esso in Francia).

È da questi metodi che si sviluppa il modello informatico utilizzato per le verifiche della rotatoria in oggetto. Partendo dalle dimensioni fisiche dell'intersezione (anello, raggio interno, larghezza corsie di ingresso, larghezza isole spartitraffico, lunghezze di conflitto...), è possibile calcolare la capacità totale di ciascun ramo di ingresso in rotatoria.

E' necessario disporre prima di una matrice origine destinazione per poter calcolare il numero di veicoli uscenti da ogni ramo (Qu), quelli circolanti nell'anello (Qc) e, quindi, adeguatamente dimensionare gli accessi attraverso il valore della capacità in entrata Qe. Tale valore, rapportato al valore effettivo di flusso entrante rilevato o indotto, fornisce il rapporto capacità/flussi, spesso indispensabile per poter cogliere le riserve di capacità di una intersezione.

Si riportano di seguito le specifiche equazioni di calcolo per i vari metodi.

A) METODO SETRA

1) il traffico uscente equivalente

$$Qu' = Qu*(15-SEP)/15$$
 [uvp/h] per SEP < 15 m
 $Qu' = 0$ [uvp/h] per SEP >= 15 m

2) il traffico complessivo di disturbo

$$Qd = (Qc + 2/3 *Qu')*(1-0,085*(ANN-8)) [uvp/h]$$

3) La capacità di traffico del ramo è:

$$C = (1.330-0.7*Qd)*(1+0.1*(ENT-3.5))$$
 [uvp/h]

dove:

Qu è il traffico uscente dal ramo [uvp/h];

Qc è il traffico circolante davanti al ramo [uvp/h];

SEP è la larghezza dell'isola spartitraffico tra la corsia di ingresso e quella di uscita del ramo [m];

ENT è la larghezza della corsia di entrata del ramo da valutarsi dietro il veicolo fermo alla linea del "dare precedenza" [m];

ANN è la larghezza dell'anello della rotatoria [m].

B) METODO CETUR

1) Determinati per ciascun ramo della rotatoria il traffico complessivo di disturbo

$$Qd = b*Qc+0,2*Qu uvp/h$$

2) La capacità di traffico del ramo è:

$$C = g^*(1.500-0.83*Qd)$$

dove:

Qu è il traffico uscente dal ramo [uvp/h];

Qc è il traffico circolante davanti al ramo [uvp/h];

ANN è la larghezza dell'anello della rotatoria [m];

"g" vale 1,0 per entrata ad una sola corsia; 1,5 per entrate a due o più corsie;

b=1 per ANN<8 m; 0,7 per ANN >=8 m ed R>=20 m; 0,9 per ANN >=8 m ed R<20 m.

10.4 LIVELLI DI SERVIZIO SECONDO HCM PER LE ROTATORIE

I risultati ottenuti dalle verifiche espletate con i metodi sperimentali sopra riportati vanno comparati con i livelli di servizio delle intersezioni a rotatoria forniti dall'HCM. Essi sono esposti nella tabella riportata di seguito.

Livello di servizio	Descrizione	Intervallo dei tempi di ritardo
A	Flusso libero	≤10
В	Flusso stabile	>10 ≤15
С	Flusso stabile	>15 ≤25
D	Tendenza al flusso instabile	>25 ≤35
E	Flusso instabile	>35 ≤50
F	Flusso forzato	>50
		-

(Highway Capacity Manual – 2000)

11. VERIFICHE ANALITICHE

In base alle definizioni riportate nei paragrafi precedenti, al calcolo analitico dei flussi indotti e alle risultanze dei rilievi di traffico, nel seguito vengono presentate le verifiche dei livelli di servizio sia per la rotatoria in esame sia per le aste stradali presenti in prossimità della rotatoria stessa nell'ora di punta 17.00 - 18.00 della giornata di venerdì e sabato.

11.1 LOS ASTE STRADALI

Il livello di servizio delle infrastrutture è analogo allo stato attuale che futuro.

	VENERDI'				
strada	n° corsie per	flussi attu	Jali	flussi futuri	
Silada	senso di marcia	veic/ora	LOS	veic/ora	LOS
SP 46 sud - direzione Vicenza	1	1.681	D	1.948	D
SP 46 centro	1	1.747	D	1.719	D
SP 46 nord - direzione Schio	1	1.119	С	1.234	С
Via A. De Gasperi	1	184	Α	211	Α
Nuova viabilità nord-ovest	1	-	-	441	Α
Nuova viabilità est	1	-	-	228	Α
Via Preazzi	1	158	Α	158	Α
Via Pasubio	1	458	Α	516	Α
SP 349	1	1.025	С	1.198	С

Figura 47 – Livelli di servizio degli assi stradali attuali e futuri – venerdì

La giornata di sabato presenta allo stato attuale dei livelli di servizio migliori del venerdì, infatti è caratterizzata da un minor flusso veicolare.

	SABATO				
strada	n° corsie per	flussi attu	Jali	flussi fut	uri
siiddd	senso di marcia	veic/ora	LOS	veic/ora	LOS
SP 46 sud - direzione Vicenza	1	1.457	C/D	1.638	C/D
SP 46 centro	1	1.506	С	1.495	С
SP 46 nord - direzione Schio	1	811	В	943	В
Via A. De Gasperi	1	165	Α	197	Α
Nuova viabilità nord-ovest	1	-	-	487	Α
Nuova viabilità est	1	-	-	264	Α
Via Preazzi	1	158	Α	158	Α
Via Pasubio	1	400	Α	465	Α
SP 349	1	805	В	1.004	В

Figura 48 – Livelli di servizio degli assi stradali attuali e futuri – sabato

12. VERIFICHE INTERSEZIONI

12.1 ROTATORIA TRA LA SP 46 – SP 349 – SP 41 (BOTTEGHINO)

Si procede quindi con la verifica della rotatoria che razionalizza l'intersezione tra la SP 46, la SP 349, via Pasubio e via Preazzi, per entrambi gli scenari nella giornata di venerdì e di sabato.

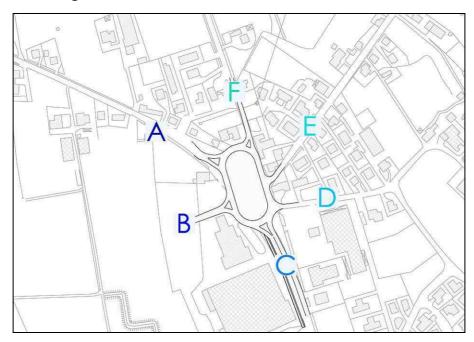


Figura 49 – Identificazione dei rami analizzati della rotatoria di progetto

Ricordando che, i rami corrispondenti sono:

- A. SP 46 via Rovereto direzione Schio;
- B. Nuova viabilità;
- C. SP 46 Strada Provinciale Pasubio;
- D. Via Preazzi;
- E. Via Pasubio:
- F. SP 349 via Battisti direzione Thiene.

Ramo	ANN	ENT	SEP
Α	8.50 m	5.50 m	11.80 m
В	8.50 m	6.50 m	14.70 m

С	8.50 m	7.00 m	12.80 m
D	8.50 m	3.00 m	0.00 m
E	8.50 m	3.00 m	0.00 m
F	8.50 m	7.50 m	6.00 m

12.1.1 Scenario di progetto - venerdì

FLUSSI DI TRAFFICO matrice origine/destinazione:

INTERSEZIONE 1 - VEICOLI EQUIVALENTI VENERDI' SCENARIO 1 FUTURI							
O/D	Α	В	С	D	Е	F	totali
Α	0	73	359	37	67	45	581
В	69	0	10	8	33	93	213
С	410	7	0	5	92	388	902
D	23	7	6	0	8	19	63
E	73	44	96	8	0	48	269
F	78	97	346	37	47	0	605
totali	653	228	817	95	247	593	2633

TRAFFICO CIRCOLANTE

Traffico circolante davanti ai rami da A a F (Qc)

Ramo A: 695 Ramo B: 1048 Ramo C: 444 Ramo D: 1251 Ramo E: 1067 Ramo F: 743

Traffico uscente dai rami da A a F (Qu)

Ramo A: 653 Ramo B: 228 Ramo C: 817 Ramo D: 95 Ramo E: 247 Ramo F: 593

Traffico entrante ai rami da A a F (Qe)

Ramo A: 581 Ramo B: 213 Ramo C: 902 Ramo D: 63 Ramo E: 269 Ramo F: 605

CAPACITA' DI TRAFFICO IN INGRESSO AI VARI RAMI

METODO - SETRA

Capacità dei rami (C): [uvp/h]

Ramo A: 962 Ramo B: 813 Ramo C: 1321 Ramo D: 427 Ramo E: 479 Ramo F:

874

Riserva di traffico ai rami (R): [valori assoluti uvp/h]

Ramo A: 381 Ramo B: 600 Ramo C: 419 Ramo D: 364 Ramo E: 210 Ramo F: 269

Riserva di traffico ai rami (R): [valori percentuali (R/C] %]

Ramo A: 40 Ramo B: 74 Ramo C: 32 Ramo D: 85 Ramo E: 44 Ramo F: 31

Capacità totale della rotonda (Ct), con il Metodo - SETRA: 4876 uvp/h

METODO - CETUR

Capacità dei rami (C): [uvp/h]

Ramo A: 986 Ramo B: 851 Ramo C: 1105 Ramo D: 754 Ramo E: 836 Ramo F:

968

Riserva di traffico ai rami (R): [valori assoluti uvp/h]

Ramo A: 405 Ramo B: 638 Ramo C: 203 Ramo D: 691 Ramo E: 567 Ramo F:

363

Riserva di traffico ai rami (R): [valori percentuali (R/C] %]

Ramo A: 41 Ramo B: 75 Ramo C: 18 Ramo D: 92 Ramo E: 68 Ramo F: 37

Capacità totale della rotonda (Ct), con il Metodo - CETUR: 5500 uvp/h

Tempi medi di attesa ai rami:

Ramo A: 8 s Ramo B: 6 s Ramo C: 14 s Ramo D: 5 s Ramo E: 6 s Ramo F: 9 s

12.1.2 Scenario di progetto - sabato

FLUSSI DI TRAFFICO matrice origine/destinazione:

INTERSEZIONE 1 - VEICOLI EQUIVALENTI SABATO SCENARIO 1 FUTURI									
O/D	O/D A B C D E F to								
Α	0	89	288	43	42	26	488		
В	69	0	17	3	33	97	219		
С	284	12	0	9	130	241	676		
D	25	6	23	0	4	19	77		
E	23	46	124	2	0	38	233		
F	54	115	367	24	23	0	583		
totali	455	268	819	81	232	421	2276		

TRAFFICO CIRCOLANTE

Traffico circolante davanti ai rami da A a F (Qc)

Ramo A: 742 Ramo B: 962 Ramo C: 362 Ramo D: 957 Ramo E: 802 Ramo F: 614

Traffico uscente dai rami da A a F (Qu)

Ramo A: 455 Ramo B: 268 Ramo C: 819 Ramo D: 81 Ramo E: 232 Ramo F: 421

Traffico entrante ai rami da A a F (Qe)

Ramo A: 488 Ramo B: 219 Ramo C: 676 Ramo D: 77 Ramo E: 233 Ramo F: 583

CAPACITA' DI TRAFFICO IN INGRESSO AI VARI RAMI

METODO - SETRA

Capacità dei rami (C): [uvp/h]

Ramo A: 947 Ramo B: 888 Ramo C: 1395 Ramo D: 620 Ramo E: 654 Ramo F:

1031

Riserva di traffico ai rami (R): [valori assoluti uvp/h]

Ramo A: 459 Ramo B: 669 Ramo C: 719 Ramo D: 543 Ramo E: 421 Ramo F:

448

Riserva di traffico ai rami (R): [valori percentuali (R/C] %]

Ramo A: 48 Ramo B: 75 Ramo C: 52 Ramo D: 88 Ramo E: 64 Ramo F: 43

Capacità totale della rotonda (Ct), con il Metodo 2 - SETRA: 5535 uvp/h

METODO - CETUR

Capacità dei rami (C): [uvp/h]

Ramo A: 991 Ramo B: 894 Ramo C: 1152 Ramo D: 928 Ramo E: 994 Ramo F:

1072

Riserva di traffico ai rami (R): [valori assoluti uvp/h]

Ramo A: 503 Ramo B: 675 Ramo C: 476 Ramo D: 851 Ramo E: 761 Ramo F:

489

Riserva di traffico ai rami (R): [valori percentuali (R/C] %]

Ramo A: 51 Ramo B: 76 Ramo C: 41 Ramo D: 92 Ramo E: 77 Ramo F: 46

Capacità totale della rotonda (Ct), con il Metodo - CETUR: 6030 uvp/h

Tempi medi di attesa ai rami:

Ramo A: 6 s Ramo B: 5 s Ramo C: 6 s Ramo D: 4 s Ramo E: 4 s Ramo F: 6 s

12.2 ROTATORIA SP 46 - VIA DE GASPERI

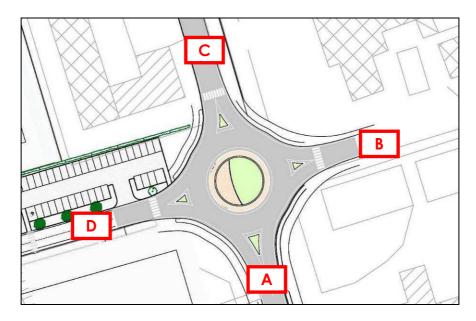


Figura 50 – Rotatoria analizzata

Ricordando che, i rami corrispondenti sono:

- A. SP 46 direzione Vicenza;
- B. Via De Gasperi;
- C. SP 46 direzione nord;
- D. Nuova viabilità di accesso.

Ramo	ANN	ENT	SEP
Α	11.00 m	5.00 m	2.10 m
В	11.00 m	4.75 m	2.40 m
С	11.00 m	5.25 m	1.80 m
D	11.00 m	4.30 m	2.30 m

12.2.1 Scenario di progetto - venerdì

FLUSSI DI TRAFFICO matrice origine/destinazione:

INTERSEZIONE 2 - VEICOLI EQUIVALENTI VENERDI' SCENARIO 1FUTURI							
O/D	Α	В	С	D	totali		
A	0	61	879	103	1043		
В	45	0	23	14	82		
С	762	55	0	0	817		
D	98	13	0	0	111		
totali	905	129	902	117	2053		

TRAFFICO CIRCOLANTE

Traffico circolante davanti ai rami da A a D (Qc)

Ramo A: 68 Ramo B: 982 Ramo C: 162 Ramo D: 862

Traffico uscente dai rami da A a D (Qu)

Ramo A: 905 Ramo B: 129 Ramo C: 902 Ramo D: 117

Traffico entrante ai rami da A a D (Qe)

Ramo A: 1043 Ramo B: 82 Ramo C: 817 Ramo D: 111

CAPACITA' DI TRAFFICO IN INGRESSO AI VARI RAMI

METODO - SETRA

Capacità dei rami (C): [uvp/h]

Ramo A: 1178 Ramo B: 878 Ramo C: 1139 Ramo D: 914

Riserva di traffico ai rami (R): [valori assoluti uvp/h]

Ramo A: 135 Ramo B: 796 Ramo C: 322 Ramo D: 803

Riserva di traffico ai rami (R): [valori percentuali (R/C] %]

Ramo A: 11 Ramo B: 91 Ramo C: 28 Ramo D: 88

Capacità totale della rotonda (Ct), con il Metodo - SETRA: 4109 uvp/h

METODO - CETUR

Capacità dei rami (C): [uvp/h]

Ramo A: 1298 Ramo B: 742 Ramo C: 1228 Ramo D: 834

Riserva di traffico ai rami (R): [valori assoluti uvp/h]

Ramo A: 255 Ramo B: 660 Ramo C: 411 Ramo D: 723

Riserva di traffico ai rami (R): [valori percentuali (R/C] %]

Ramo A: 20 Ramo B: 89 Ramo C: 33 Ramo D: 87

Capacità totale della rotonda (Ct), con il Metodo - CETUR: 4102 uvp/h

Tempi medi di attesa ai rami:

Ramo A: 9 s Ramo B: 6 s Ramo C: 6 s Ramo D: 5 s

12.2.2 Scenario di progetto - sabato

FLUSSI DI TRAFFICO matrice origine/destinazione:

INTERSEZIONE 2 - VEICOLI EQUIVALENTI SABATO SCENARIO 1 FUTURI							
O/D	Α	В	С	D	totali		
Α	0	50	648	125	823		
В	38	0	28	17	83		
С	770	49	0	0	819		
D	107	15	0	0	122		
totali	915	114	676	142	1847		

TRAFFICO CIRCOLANTE

Traffico circolante davanti ai rami da A a D (Qc)

Ramo A: 64 Ramo B: 773 Ramo C: 180 Ramo D: 857

Traffico uscente dai rami da A a D (Qu)

Ramo A: 915 Ramo B: 114 Ramo C: 676 Ramo D: 142

Traffico entrante ai rami da A a D (Qe)

Ramo A: 823 Ramo B: 83 Ramo C: 819 Ramo D: 122

CAPACITA' DI TRAFFICO IN INGRESSO AI VARI RAMI

METODO - SETRA

Capacità dei rami (C): [uvp/h]

Ramo A: 1177 Ramo B: 1005 Ramo C: 1209 Ramo D: 909

Riserva di traffico ai rami (R): [valori assoluti uvp/h]

Ramo A: 354 Ramo B: 922 Ramo C: 390 Ramo D: 787

Riserva di traffico ai rami (R): [valori percentuali (R/C] %]

Ramo A: 30 Ramo B: 92 Ramo C: 32 Ramo D: 87

Capacità totale della rotonda (Ct), con il Metodo - SETRA: 4300 uvp/h

METODO - CETUR

Capacità dei rami (C): [uvp/h]

Ramo A: 1300 Ramo B: 901 Ramo C: 1252 Ramo D: 834

Riserva di traffico ai rami (R): [valori assoluti uvp/h]

Ramo A: 477 Ramo B: 818 Ramo C: 433 Ramo D: 712

Riserva di traffico ai rami (R): [valori percentuali (R/C] %]

Ramo A: 37 Ramo B: 91 Ramo C: 35 Ramo D: 85

Capacità totale della rotonda (Ct), con il Metodo - CETUR: 4287 uvp/h

Tempi medi di attesa ai rami:

Ramo A: 5 s Ramo B: 4 s Ramo C: 6 s Ramo D: 5 s

12.3LOS ROTATORIE

Assumendo in via del tutto cautelativa che il LOS della rotatoria sia determinano dal LOS peggiore di ogni singolo ramo si ricavano le tabelle seguenti, che riassumono il livello di servizio delle rotatorie analizzate nei paragrafi precedenti nei vari scenari.

Come si evince il livello di servizio delle rotatorie di progetto è buono per tutti gli scenari analizzati.

SCENARIO FUTURO				
		VENERDI'		
Rotatoria	Rami	Secondi	LOS ramo	LOS rotatoria
- SP	Ramo A	8	Α	
Rotatoria SP 46 - 349 - SP 41	Ramo B	6	Α	В
SP	Ramo C	14	В	
oria 19 -	Ramo D	5	Α	
atc 34	Ramo E	6	Α	
Rot	Ramo F	9	Α	
SP De	Ramo A	9	Α	Α
Rotatoria SP 46 - via De Gasperi	Ramo B	6	Α	
	Ramo C	6	Α	
	Ramo D	5	Α	

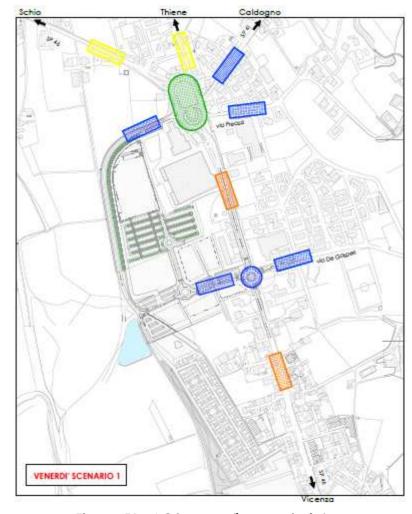


Figura 51 – LOS venerdì scenario futuro

SCENARIO FUTURO				
		SABATO		
Rotatoria	Rami	Secondi	LOS ramo	LOS rotatoria
- SP	Ramo A	6	Α	
46 -	Ramo B	5	Α	А
Rotatoria SP 46 - via De 349 - SP 41 Gasperi	Ramo C	6	Α	
	Ramo D	4	Α	
	Ramo E	4	Α	
	Ramo F	6	Α	
tatoria SP - via De Sasperi	Ramo A	5	Α	٨
	Ramo B	4	Α	
	Ramo C	6	Α	Α
Ro 46	Ramo D	5	А	

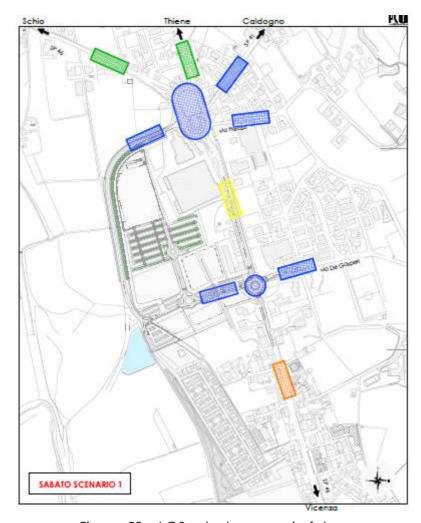


Figura 52 – LOS sabato scenario futuro

13. VERIFICHE CON MODELLO DI MICROSIMULAZIONE

13.1 MOTIVI DELL'APPROCCIO MICROSIMULATIVO

L'approccio microsimulativo consente di analizzare in maniera puntuale e dinamica la situazione urbana del traffico veicolare, caratterizzata per lo più da intersezioni a raso e incroci semaforizzati.

Utilizzando modelli di microsimulazione del traffico si possono ottenere numerose informazioni dettagliate e precise sui singoli veicoli, quali posizione, velocità, accelerazione, arresti, code, distanza percorsa, tempo di viaggio, potenziali collisioni, percorsi alternativi, livelli di servizio ed eventuali criticità.

Le informazioni dettagliate dei singoli veicoli vengono determinate attraverso specifici dati relativi la geometria stradale che si sta analizzando ed i flussi di traffico. Attraverso le informazioni inserite il programma è in grado di simulare il comportamento dei veicoli attraverso alcune regole quali:

- teoria dell'inseguitore: basata sul principio che ogni guidatore tende a regolare al sua velocità uguale a quella del veicolo che la precede, nel qual caso potrà rimanere dietro al veicolo che segue con una determinata distanza di sicurezza o cercare di sorpassare il veicolo effettuando un cambio corsia;
- teoria del cambio corsia: il guidatore può essere indotto, in base alle condizioni del traffico, al cambio corsia (strade con più corsie) o al superamento dei veicoli (cambio corsia temporaneo). In entrambi i casi valuterà, in base alle condizioni del traffico e del veicolo, la possibilità, il momento adeguato e la velocità di sorpasso;
- 3. teoria dell'intervallo minimo di accesso: colui che guida il veicolo può decide in ogni istante le manovre da eseguire

(svolta, cambio corsia, arresto, ...) in base alle condizioni al contorno del traffico veicolare, stabilendo in tal modo un intervallo minimo che gli serve per eseguire l'operazione scelta.

Sostanzialmente la microsimulazione richiede una grande quantità di dati di input, ma è in grado di fornire una simulazione molto più dettagliata e verosimile delle macrosimulazioni e delle stime effettuate sui rilievi di traffico e della relativa domanda.

Nel caso specifico le microsimulazioni adottate costituiscono la verifica di capacità della rete stradale intesa come sistema viario complessivo e integrato, in quanto attraverso le analisi dinamiche è stato possibile verificare l'effettivo deflusso veicolare considerando la mutua interferenza causata dalla presenza, più o meno limitrofa, di diverse intersezioni lungo i percorsi veicolari degli utenti.

13.2 STRUMENTI E METODOLOGIA

Per valutare la precisione dell'analisi e al fine di valutare nel modo più reale possibile il funzionamento dello schema progettuale, si è utilizzato il software **VISSIM 9**, modello di simulazione microscopica della circolazione stradale che consente di riprodurre i movimenti di ogni veicolo sulla rete, ed evidenziare e quantificare anomalie puntuali.

13.3 CARATTERISTICHE DELLE MICROSIMULAZIONI ESEGUITE

Il modello di microsimulazione è costituito da una componente di offerta e una componente di domanda. L'offerta viene rappresentata dalla rete stradale che viene ricostruita in maniera dettagliata con:

- le stesse caratteristiche fisiche, raggi di curvatura, larghezza corsie, banchine etc;
- le medesime regole di circolazione, sensi unici, attraversamenti pedonali, etc;

le modalità di regolazione alle intersezioni quali dare la precedenza,
 stop, impianti semaforici con relativi cicli etc.

La domanda è costituita dagli elementi dinamici della simulazione, ovvero dalle componenti di traffico – veicoli a motore e pedoni - che transitano sulla rete dedotti dalla matrice origine destinazione ricostruita elaborando i rilievi di traffico che si hanno a disposizione.

VISSIM si basa sul modello di percezione psicofisica di WIEDEMANN (1974, cfr. anche Leutzbach/Wiedemann, 1986; Leutzbach, 1988).

Tale modello prende a fondamento il concetto seguente: il comportamento dell'unità conducente-veicolo interagisce con le altre unità conducente-veicolo presenti nella rete. Ne consegue che un veicolo accelera e decelera in funzione dei veicoli che lo precedono o che lo affiancano.

Si sottolinea, inoltre, che la simulazione del comportamento di un conducente, su una carreggiata a più corsie o su una corsia di dimensioni considerevoli, percepisce anche i veicoli posti a lato, considerando quindi l'opportunità del sorpasso. Inoltre l'attenzione del conducente viene influenzata dai semafori quando il veicolo arriva ad una distanza di circa 100 m dalla linea di arresto.

Figura 53 – Identificazione delle manovre rilevate

La microsimulazione si basa su una serie di elementi dinamici che riguardano sia il comportamento del conducente, sia le caratteristiche del

veicolo (auto, veicoli commerciali, mezzi pesanti...). In altri termini VISSIM considera:

A. Specifiche tecniche del veicolo:

- lunghezza del veicolo;
- velocità massima;
- accelerazione;
- posizione istantanea del veicolo nella rete;
- velocità e accelerazione istantanea del veicolo.

B. Comportamento dell'unità conducente-veicolo:

- limiti psicofisici di percezione del conducente (capacità di stima, percezione della sicurezza, disposizione ad assumere dei rischi);
- memoria del conducente:
- accelerazione in funzione della velocità corrente e della velocità desiderata.

C. Interazione tra più unità conducente-veicolo:

- rapporti fra un determinato veicolo e i veicoli che lo precedono e che lo seguono nella stessa corsia e nelle corsie vicine;
- informazioni riguardanti l'arco di strada utilizzato;
- informazioni concernenti l'impianto semaforico più vicino.

13.4 MODELLAZIONE DELL'OFFERTA

La modellizzazione dell'offerta di trasporto è avvenuta tramite la definizione di:

- archi;
- connessioni.

Per archi si intende la serie di elementi che costituiscono la rete stradale; nel modello di simulazione sono implementati considerando le reali caratteristiche della geometria stradale:

- larghezza;
- pendenza;
- senso di marcia;
- numero corsie.

Al fine di permettere cambi di direzione e/o di unire più archi di conformazione disomogenea sono stati utilizzati elementi di connessione.

13.5 FORMATO E DATI DI OUTPUT

Le microsimulazioni dinamiche producono una serie di indicatori prestazionali. In base ai valori estratti si ricavano e comparano in modo analitico i LOS dei vari approcci di ogni singola intersezione relativamente agli scenari simulati. Nel dettaglio sono stati utilizzati due distinti livelli di valutazione.

Livello 1: Valutazione globale della rete viaria

Questo livello di analisi fornisce una visione globale e di facile comprensione per quanto riguarda il funzionamento dell'intera rete viaria ed ha consentito di comparare in modo immediato differenti scenari grazie all'ausilio di specifici indicatori prestazionali elencati in seguito:

- distanza totale percorsa dai veicoli;
- tempo totale di viaggio;
- velocità media dei veicoli:
- ritardo totale dei veicoli;
- ritardo medio per veicolo.
- totale ritardo a fermo:
- ritardo medio a fermo per veicolo.

Livello 2: Valutazione di nodo

Questo livello di analisi ha riguardato i nodi delle reti stradali così da poter quantificare gli effetti sulla circolazione imputabili alla presenza della futura

struttura di vendita. Gli indicatori prestazionali utilizzati per questa analisi sono:

- la lunghezza media/massima della coda per ogni approccio;
- il ritardo medio per i veicoli provenienti dai vari approcci;
- il perditempo medio a fermo per i singoli approcci;
- il corrispondente LOS per ogni approccio.

Si precisa che per definire la situazione di coda si è stabilito che un veicolo inizia a fare coda quando si muove a una velocità inferiore ai 5km/h e si trova ad una distanza dal mezzo che lo precede inferiore ai 20m; tale situazione perdura fino a quando viene superato questo valore di distanza o la velocità di 10km/h.

13.6 MICROSIMULAZIONI ESEGUITE

Al fine di produrre un'analisi completa e dettagliata della situazione viabilistica relativa all'area oggetto di analisi è stata eseguita la microsimulazione in riferimento allo scenario progettuale:

 SCENARIO DI PROGETTO – flusso indotto dalla struttura di vendita – rotatoria del Botteghino – rotatoria tra la SP 46 e Via De Gasperi;

Inoltre tali microsimulazioni sono riferite all'ora di punta serale che, come riscontrato dai dati di traffico, rappresenta l'intervallo critico per il sistema viario vista la presenza futura di alcuni poli commerciali.

Sia allo stato attuale che negli scenari futuri sono stati simulati 7200 secondi. Si sono considerate significative le letture relative ai 3600 secondi centrali, trascurando i primi e gli ultimi 30 minuti in cui il sistema raggiunge ed esaurisce le condizioni di regime.

Di seguito si riportano alcune immagini significative delle reti simulate.

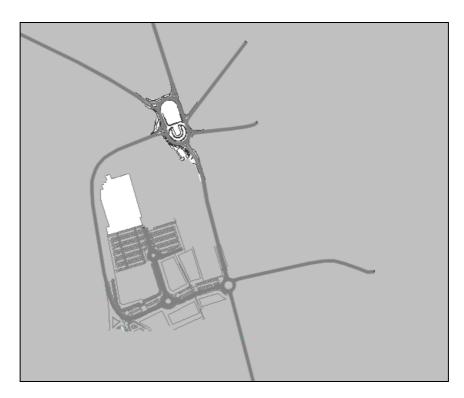


Figura 54 – Schema rete simulata

Figura 55 – Rete scenario di progetto

Figura 56 – Particolare simulazione scenario di progetto

Figura 57 – Particolare intersezione via De Gasperi

Figura 58 – Particolare intersezione Botteghino

13.6.1 Valutazioni di rete

Basandosi sui valori degli indicatori prestazionali descritti e sulla percezione visiva del funzionamento della rete ottenuta mediante l'analisi a video delle simulazioni, si presenta in seguito una valutazione critica dei risultati ottenuti, distinta per i vari scenari analizzati. Dalle risultanze di seguito riportate emergono le seguenti considerazioni:

- il numero di veicoli simulato dinamicamente negli scenari risulta congruente a quello stimato, e verificati preliminarmente con i modelli di tipo statico. Si precisa che il modello di microsimulazione adotta lievi approssimazioni di generazione dei veicoli;
- la velocità media dei veicoli è di circa 38 km/h;
- il ritardo medio per veicolo e il ritardo totale risultano essere valori molto contenuti.

VALUTAZIONE DI RETE VENERDÌ - SCENARIO PROGETTO	
PARAMETRI DI RETE	VALORI
Numero di veicoli simulati	2995
Totale distanza percorsa veicoli (Km)	3739,9
Totale tempo di viaggio veicoli (h)	96,7
Velocità media (Km/h)	38,7
Totale ritardo veicoli (h)	17,2
Ritardo medio per veicolo fermo (s)	18,4

VALUTAZIONE DI RETE SABATO - SCENARIO PROGETTO	
PARAMETRI DI RETE	VALORI
Numero di veicoli simulati	2625
Totale distanza percorsa veicoli (Km)	3280,5
Totale tempo di viaggio veicoli (h)	77,4
Velocità media (Km/h)	42,4
Totale ritardo veicoli (h)	7,6
Ritardo medio per veicolo fermo (s)	10,3

13.6.2 Valutazioni di nodo

Si riportano le risultanze numeriche riferite alle intersezioni:

- intersezione 1: ovale tra la SP 46 SP 349 via Pasubio via Preazzi;
- intersezione 2: rotatoria tra SP 46 via De Gasperi;

Si premette che i parametri significativi ai fini di una valutazione critica dei risultati sono identificati dall'accodamento medio e dal ritardo in quanto l'accodamento massimo esprime un singolo istante poco significativo ai fini della descrizione del reale funzionamento del nodo analizzato.

Si osserva che in termini generali le intersezioni non presentano particolari criticità.

Intersezione 1 - Ovale SP 46

SCENARIO DI PROGETTO

iniciaezione i ovale di 40				
VALUTAZIONE DI NODO VENERDI' - SCENARIO 1				
RAMO	CODA MEDIA	RITARDO (s)	LOS	
A - SP 46 lato nord	1,4	8,2	Α	
B - accesso CC	0	10,8	В	
C - SP 46 lato sud	1,5	14,3	В	
D - via Preazzi	0,1	10,1	В	
E - via Paubio	0,3	9,2	Α	
F - SP 349	2,8	7,7	Α	

Intersezione 2 - Rotatoria via De Gasperi

VALUTAZIONE DI NODO VENERDI' - SCENARIO 1					
RAMO	CODA MEDIA	RITARDO (s)	LOS		
A - SP 46 lato sud	0,6	7,0	Α		
B - via De Gasperi	0,7	3,0	Α		
C - SP 46 lato nord	0,5	4,0	Α		
D - accesso CC	0,4	2,0	Α		

Intersezione 1 - Ovale SP 46

VALUTAZIONE DI NODO SABATO- SCENARIO 1				
RAMO	CODA MEDIA	RITARDO (s)	LOS	
A - SP 46 lato nord	1,4	8,1	Α	
B - accesso CC	0	7,5	Α	
C - SP 46 lato sud	0,1	6,5	Α	
D - via Preazzi	0	6,6	Α	
E - via Paubio	0	8,8	Α	
F - SP 349	3,3	9,5	Α	

Intersezione 2 - Rotatoria via De Gasperi

VALUTAZIONE DI NODO SABATO - SCENARIO 1				
RAMO	CODA MEDIA	RITARDO (s)	LOS	
A - SP 46 lato sud	0,4	3,0	Α	
B - via De Gasperi	0,3	2,0	Α	
C - SP 46 lato nord	0,5	4,0	Α	
D - accesso CC	0,2	2,0	Α	

14. CONCLUSIONI

A seguito dell'analisi approfondita nei paragrafi precedenti e delle risultanze delle verifiche analitiche è possibile considerare quanto segue:

- la riqualificazione della rotatoria del Botteghino, risolve una criticità "storica" esistente legata alla gestione dei flussi del nodo, e risulta strategica quale accesso primario alla struttura di vendita in oggetto per i flussi provenienti da nord. Tale intersezione realizzata a cura e spese del proponente, consente di soddisfare le condizioni di sostenibilità così come desunte dall'analisi, per lo scenario riferito a 7.000 mg di superficie di vendita;
- la coesistenza in futuro delle due rotatorie lungo la strada provinciale (quella di recente realizzazione tra la SP 46 e via De Gasperi e quella futura del "Botteghino" in corso di realizzazione) garantirà un duplice accesso al comparto commerciale e consentirà una separazione dei flussi in ingresso e in uscita, ripartendo le provenienze tra i flussi provenienti da nord e quelli provenienti da sud alleggerendo pertanto il sistema viario complessivo, migliorando e garantendo idonee condizioni di deflusso de veicoli lungo l'asta della SP 46, oltre che una maggiore sicurezza generale per gli utenti;
- per la verifica delle intersezioni a rotatoria e delle aste stradali sono stati presi in esame sia modellazioni di tipo statico che dinamico che hanno verificato e garantito il funzionamento del sistema viario;
- le verifiche analitiche effettuate per il calcolo dei livelli di servizio delle infrastrutture viarie (strade ed intersezioni) mostrano che l'intervento in oggetto, risulta ben inserito dal punto di vista infrastrutturale in relazione ai flussi di traffico indotti e le opere previste che consentono una razionale distribuzione e gestione dei flussi futuri, garantendo idonei livelli di servizio ed assenza di criticità.